Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"Center for the Environmental Implications of Nanotechnology "
Sort by:
Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers
by
Department of Biology ; Northern Arizona University [Flagstaff]
,
Centre National de la Recherche Scientifique (CNRS)
,
Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
in
49/23
,
704/158/855
,
704/172/4081
2016
Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg(-1) dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep modification of the bacterial community structure after just 90 days of exposure to even the lowest, realistic concentration of NPs. These results appeal further research to assess how these emerging pollutants modify the soil health and broader ecosystem function.
Journal Article
Consistent declines in aquatic biodiversity across diverse domains of life in rivers impacted by surface coal mining
by
Gerson, Jacqueline R.
,
Fierer, Noah
,
Brooks, Alexander C.
in
Algae
,
Appalachian region
,
Aquatic ecosystems
2021
The rivers of Appalachia (United States) are among the most biologically diverse freshwater ecosystems in the temperate zone and are home to numerous endemic aquatic organisms. Throughout the Central Appalachian ecoregion, extensive surface coal mines generate alkaline mine drainage that raises the pH, salinity, and trace element concentrations in downstream waters. Previous regional assessments have found significant declines in stream macroinvertebrate and fish communities after draining these mined areas. Here, we expand these assessments with a more comprehensive evaluation across a broad range of organisms (bacteria, algae, macroinvertebrates, all eukaryotes, and fish) using high-throughput amplicon sequencing of environmental DNA (eDNA). We collected water samples from 93 streams in Central Appalachia (West Virginia, United States) spanning a gradient of mountaintop coal mining intensity and legacy to assess how this land use alters downstream water chemistry and affects aquatic biodiversity. For each group of organisms, we identified the sensitive and tolerant taxa along the gradient and calculated stream specific conductivity thresholds in which large synchronous declines in diversity were observed. Streams below mining operations had steep declines in diversity (−18 to −41%) and substantial shifts in community composition that were consistent across multiple taxonomic groups. Overall, large synchronous declines in bacterial, algal, and macroinvertebrate communities occurred even at low levels of mining impact at stream specific conductivity thresholds of 150–200 μS/cm that are substantially below the current U.S. Environmental Protection Agency aquatic life benchmark of 300 μS/cm for Central Appalachian streams. We show that extensive coal surface mining activities led to the extirpation of 40% of biodiversity from impacted rivers throughout the region and that current water quality criteria are likely not protective for many groups of aquatic organisms.
Journal Article