Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Country Of Publication
    • Publisher
    • Source
    • Language
    • Place of Publication
    • Contributors
    • Location
921 result(s) for "Centro, S."
Sort by:
The many lives of Erik Kessels
\"'People consume photographs,' says Kessels, 'they don't look at them anymore.' This volume is a primer on how to look at, and how to better understand the hybrid practice of this artist who defies categorization. Including more than twenty of the artist's series and features essays by Simon Baker, Hans Aarsman, and curator Francesco Zanot.\"--From slipcase.
ICARUS at the Fermilab Short-Baseline Neutrino program: initial operation
The ICARUS collaboration employed the 760-ton T600 detector in a successful 3-year physics run at the underground LNGS laboratory, performing a sensitive search for LSND-like anomalous ν e appearance in the CERN Neutrino to Gran Sasso beam, which contributed to the constraints on the allowed neutrino oscillation parameters to a narrow region around 1 eV 2 . After a significant overhaul at CERN, the T600 detector has been installed at Fermilab. In 2020 the cryogenic commissioning began with detector cool down, liquid argon filling and recirculation. ICARUS then started its operations collecting the first neutrino events from the booster neutrino beam (BNB) and the Neutrinos at the Main Injector (NuMI) beam off-axis, which were used to test the ICARUS event selection, reconstruction and analysis algorithms. ICARUS successfully completed its commissioning phase in June 2022. The first goal of the ICARUS data taking will be a study to either confirm or refute the claim by Neutrino-4 short-baseline reactor experiment. ICARUS will also perform measurement of neutrino cross sections with the NuMI beam and several Beyond Standard Model searches. After the first year of operations, ICARUS will search for evidence of sterile neutrinos jointly with the Short-Baseline Near Detector, within the Short-Baseline Neutrino program. In this paper, the main activities carried out during the overhauling and installation phases are highlighted. Preliminary technical results from the ICARUS commissioning data with the BNB and NuMI beams are presented both in terms of performance of all ICARUS subsystems and of capability to select and reconstruct neutrino events.
Developing instrumentation for analysis of CPV TwinFocus® system
Concentrator photovoltaics (CPV) is a technology that offers an alternative to standard silicon modules, being more efficient and eco-friendlier. AtemEnergia is developing a CPV product with good characteristics of efficiency and reliability. To monitor the progresses of our prototypes, test their quality and discover potential defects in the devices and in the production lane, custom experimental setups were necessary, to investigate the peculiar characteristics of this technology, avoiding the huge costs of commercial instrumentation in this field. Here is an overview of the tests necessary to guarantee the correct production quality, along with the custom solutions we adopted for their implementation.
Concentrated Photo Voltaics (CPV): a case study
Concentrated PhotoVoltaic (CPV), among green energy solutions, nowadays has the ambition to reach grid-parity without subside. CPV substitutes large areas of expensive semiconductor solar cells, with concentrating optics made of cheap materials. Moreover the cells that are suitable for CPV exhibits an unprecedented efficiency and their technology is progressing every year. A case study project, TwinFocus®, will be presented in detail.
Experimental search for the “LSND anomaly” with the ICARUS detector in the CNGS neutrino beam
We report an early result from the ICARUS experiment on the search for a ν μ → ν e signal due to the LSND anomaly. The search was performed with the ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS neutrinos from CERN at an average energy of about 20 GeV, after a flight path of ∼730 km. The LSND anomaly would manifest as an excess of ν e events, characterized by a fast energy oscillation averaging approximately to with probability . The present analysis is based on 1091 neutrino events, which are about 50 % of the ICARUS data collected in 2010–2011. Two clear ν e events have been found, compared with the expectation of 3.7±0.6 events from conventional sources. Within the range of our observations, this result is compatible with the absence of a LSND anomaly. At 90 % and 99 % confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation probabilities and are set respectively. The result strongly limits the window of open options for the LSND anomaly to a narrow region around (Δ m 2 ,sin 2 (2 θ )) new =(0.5 eV 2 ,0.005), where there is an overall agreement (90 % CL) between the present ICARUS limit, the published limits of KARMEN and the published positive signals of LSND and MiniBooNE Collaborations.
Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector
Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.
Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam
A bstract During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks for a total of ~1.8 × 10 17 p.o.t., with the proton beam made of bunches, few ns wide and separated by 100 ns. This beam structure allows a very accurate time of flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing synchronization have been substantially improved for this campaign, taking advantage of additional independent GPS receivers, both at CERN and LNGS as well as of the deployment of the “White Rabbit” protocol both at CERN and LNGS. The ICARUS-T600 detector has collected 25 beam-associated events; the corresponding time of flight has been accurately evaluated, using all different time synchronization paths. The measured neutrino time of flight is compatible with the arrival of all events with speed equivalent to the one of light: the difference between the expected value based on the speed of light and the measured value is δt = tof c −tof ν  = 0.10 ± 0.67 stat.  ± 2.39 syst.  ns. This result is in agreement with the value previously reported by the ICARUS Collaboration, δt  = 0.3 ± 4.9 stat.  ± 9.0 syst.  ns, but with improved statistical and systematic accuracy.
Measurement of the μ decay spectrum with the ICARUS liquid Argon TPC
Examples are given which prove the ICARUS detector quality through relevant physics measurements. We study the μ decay energy spectrum from a sample of stopping μ events acquired during the test run of the ICARUS T600 detector. This detector allows the spatial reconstruction of the events with fine granularity, hence, the precise measurement of the range and dE/dx of the μ with high sampling rate. This information is used to compute the calibration factors needed for the full calorimetric reconstruction of the events. The Michel \\(\\rho\\) parameter is then measured by comparison of the experimental and Monte Carlo simulated μ decay spectra, obtaining \\(\\rho = 0.72\\pm 0.06 \\textrm{(stat.)} \\pm 0.08 \\textrm{(syst.)}\\). The energy resolution for electrons below \\(\\sim 50\\) MeV is finally extracted from the simulated sample, obtaining \\((E^e_{\\textrm{meas}}-E^e_{\\text{MC}})/E^e_{MC} = 11\\% /\\sqrt{E\\textrm{[MeV]}} \\oplus 2\\%\\).
Measurement of through-going particle momentum by means of multiple scattering with the ICARUS T600 TPC
The ICARUS collaboration has demonstrated, following the operation of a 600 ton (T600) detector at shallow depth, that the technique based on liquid argon time projection chambers is now mature. The study of rare events, not contemplated in the standard model, can greatly benefit from the use of this kind of detectors. In particular, a deeper understanding of atmospheric neutrino properties will be obtained thanks to the unprecedented quality of the data ICARUS provides. However if we concentrate on the T600 performance, most of the νμ charged current sample will be partially contained, due to the reduced dimensions of the detector. In this article, we address the problem of how well we can determine the kinematics of events having partially contained tracks. The analysis of a large sample of atmospheric muons collected during the T600 test run demonstrates that, in case the recorded track is at least one meter long, the muon momentum can be reconstructed by an algorithm that measures the multiple Coulomb scattering along the particle’s path. Moreover, we show that momentum resolution can be improved by almost a factor two using an algorithm based on the Kalman filtering technique.