Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
64
result(s) for
"Cesaroni, Claudio"
Sort by:
The Ionospheric Equivalent Slab Thickness: A Review Supported by a Global Climatological Study Over Two Solar Cycles
by
Nava, Bruno
,
Cesaroni, Claudio
,
Pignalberi, Alessio
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Electron density
2022
The ionospheric equivalent slab thickness (
τ
) is a parameter characterizing both the distribution of the plasma in the ionosphere and the shape of the corresponding vertical electron density profile. It is calculated as the ratio of the vertical total electron content (vTEC) to the ionospheric F2-layer electron density maximum (
Nm
F2). Since its definition dated back in the 60s, a lot of information on the behavior of
τ
for different helio-geophysical conditions has been cumulated and the connection with several plasma properties has been also demonstrated. The beginning of the Global Positioning System (GPS) era in the 90s had a strong effect on the studies about
τ
because GPS signals allow to obtain the vTEC up to about 20000 km of altitude. Recently,
τ
has also found application in many data-assimilation methodologies, especially for the improvement of empirical ionospheric models based on near real-time data. All of these topics are reviewed and discussed in this paper based on the literature published in the last sixty years.
Moreover, to highlight and summarize the main global climatological features of
τ
, in this work we selected thirty-two ionospheric stations globally distributed and co-located with ground-based Global Navigation Satellite System (GNSS) receivers, for the last two solar cycles. This allowed to collect a dataset of
Nm
F2 and vTEC that represents the largest and most complete ever analyzed for studies concerning
τ
, which gave the chance to deeply investigate its spatial, diurnal, seasonal, and solar activity variations. The corresponding results are presented and discussed in the light of the existing literature.
Journal Article
IONORING: Real-Time Monitoring of the Total Electron Content over Italy
by
Spogli, Luca
,
De Franceschi, Giorgiana
,
Cesaroni, Claudio
in
Belgium
,
Data acquisition
,
Data assimilation
2021
IONORING (IONOspheric RING) is a tool capable to provide the real-time monitoring and modeling of the ionospheric Total Electron Content (TEC) over Italy, in the latitudinal and longitudinal ranges of 35°N–48°N and 5°E–20°E, respectively. IONORING exploits the Global Navigation Satellite System (GNSS) data acquired by the RING (Rete Integrata Nazionale GNSS) network, managed by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system provides TEC real-time maps with a very fine spatial resolution (0.1° latitude x 0.1° longitude), with a refresh time of 10 min and a typical latency below the minute. The TEC estimated at the ionospheric piercing points from about 40 RING stations, equally distributed over the Italian territory, are interpolated using locally (weighted) regression scatter plot smoothing (LOWESS). The validation is performed by comparing the IONORING TEC maps (in real-time) with independent products: (i) the Global Ionospheric Maps (GIM) - final product- provided by the International GNSS Service (IGS), and (ii) the European TEC maps from the Royal Observatory of Belgium. The validation results are satisfactory in terms of Root Mean Square Error (RMSE) between 2 and 3 TECu for both comparisons. The potential of IONORING in depicting the TEC daily and seasonal variations is analyzed over 3 years, from May 2017 to April 2020, as well as its capability to account for the effect of the disturbed geospace on the ionosphere at mid-latitudes. The IONORING response to the X9.3 flare event of September 2017 highlights a sudden TEC increase over Italy of about 20%, with a small, expected dependence on the latitude, i.e., on the distance from the subsolar point. Subsequent large regional TEC various were observed in response to related follow-on geomagnetic storms. This storm is also used as a case event to demonstrate the potential of IONORING in improving the accuracy of the GNSS Single Point Positioning. By processing data in kinematic mode and by using the Klobuchar as the model to provide the ionospheric correction, the resulting Horizontal Positioning Error is 4.3 m, lowering to, 3.84 m when GIM maps are used. If IONORING maps are used as the reference ionosphere, the error is as low as 2.5 m. Real-times application and services in which IONORING is currently integrated are also described in the conclusive remarks.
Journal Article
The ionospheric irregularities climatology over Svalbard from solar cycle 23
2019
The paper presents an unprecedented description of the climatology of ionospheric irregularities over the Arctic derived from the longest Global Navigation Satellite Systems data series ever collected for this specific aim. Two TEC and scintillation receivers are working at Ny-Ålesund (Svalbard, NO), the first of which has been installed in late September 2003. They sample the L1 and L2 signals at 50 Hz from all the GPS satellites in view. The receivers monitor an area of about 600 km radius that includes the auroral and cusp/cap regions in the European longitudinal sector. The length of the data series and the privileged site of observation allow describing the Arctic ionosphere along about two solar cycles, from the descending phase of cycle 23 to almost the end of cycle 24. Our analysis results into a detailed assessment of the long-term behaviour of the ionosphere under solar maximum and solar minimum conditions, including several periods of perturbed ionospheric weather caused by unfavourable helio-geophysical conditions. Since November 2015, a multi-constellation GNSS receiver has been deployed in Ny-Ålesund, providing the opportunity to perform the ionospheric climatology from Galileo signals. The results offer realistic features of the high latitude ionosphere that can substantially contribute to the necessary improvements of forecasting models, providing a broad spectrum of ionospheric reactions to different space weather conditions.
Journal Article
Neural network based model for global Total Electron Content forecasting
by
Cesaroni, Claudio
,
Fiocca, Michele
,
De Franceschi, Giorgiana
in
Empirical models
,
Forecasting
,
Geomagnetic storms
2020
We introduce a novel empirical model to forecast, 24 h in advance, the Total Electron Content (TEC) at global scale. The technique leverages on the Global Ionospheric Map (GIM), provided by the International GNSS Service (IGS), and applies a nonlinear autoregressive neural network with external input (NARX) to selected GIM grid points for the 24 h single-point TEC forecasting, taking into account the actual and forecasted geomagnetic conditions. To extend the forecasting at a global scale, the technique makes use of the NeQuick2 Model fed by an effective sunspot number R12 (R12eff), estimated by minimizing the root mean square error (RMSE) between NARX output and NeQuick2 applied at the same GIM grid points. The novel approach is able to reproduce the features of the ionosphere especially during disturbed periods. The performance of the forecasting approach is extensively tested under different geospatial conditions, against both TEC maps products by UPC (
Universitat Politècnica de Catalunya
) and independent TEC data from Jason-3 spacecraft. The testing results are very satisfactory in terms of RMSE, as it has been found to range between 3 and 5 TECu. RMSE depend on the latitude sectors, time of the day, geomagnetic conditions, and provide a statistical estimation of the accuracy of the 24-h forecasting technique even over the oceans. The validation of the forecasting during five geomagnetic storms reveals that the model performance is not deteriorated during disturbed periods. This 24-h empirical approach is currently implemented on the Ionosphere Prediction Service (IPS), a prototype platform to support different classes of GNSS users.
Journal Article
Performance Evaluation of VTEC GIMs for Regional Applications during Different Solar Activity Periods, Using RING TEC Values
by
Tornatore, Vincenza
,
Cesaroni, Claudio
,
Pezzopane, Michael
in
Accuracy
,
Calibration
,
calibration technique
2021
This paper presents a comparison of the vertical total electron content (vTEC) estimated over Italy using two different approaches: the GPS Global Ionosphere Maps (GIMs) and the so-called “calibration technique” developed by Ciraolo in 2007. The study has been carried out at a regional level by considering three Italian dual-frequency stations of the GPS permanent network “Rete Integrata Nazionale GPS (RING)”. The GPS receivers are permanently installed at Madesimo (geographical coordinates: 46.5 N, 9.4 E), Rome (geographical coordinates: 41.8 N, 12.5 E) and Resuttano (geographical coordinates: 37.7 N, 14.1 E), respectively in the north, center and south of Italy. Time windows selected for the analysis include periods of both low (July 2008 to June 2009) and high (September 2013 to August 2014) solar activity. The two datasets have also been studied considering both quiet and disturbed geomagnetic activity conditions. Moreover, the effects of an extreme geomagnetic storm have been investigated in March 2015 when the well-known St. Patrick storm occurred. Overall, GIM estimated values are always higher than those calibrated by the Ciraolo procedure for all the considered datasets. The differences between the two methods increase as the latitude decreases, and they increase as the solar activity intensifies. The outcomes of this study shall be helpful when applying GlMs at a regional level.
Journal Article
Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique
by
Alfonsi Lucilla
,
Cesaroni, Claudio
,
Spogli Luca
in
Adaptive algorithms
,
Adaptive filters
,
Data acquisition
2020
We contribute to the debate on the identification of phase scintillation induced by the ionosphere on the global navigation satellite system (GNSS) by introducing a phase detrending method able to provide realistic values of the phase scintillation index at high latitude. It is based on the fast iterative filtering signal decomposition technique, which is a recently developed fast implementation of the well-established adaptive local iterative filtering algorithm. FIF has been conceived to decompose nonstationary signals efficiently and provide a discrete set of oscillating functions, each of them having its frequency. It overcomes most of the problems that arise when using traditional time–frequency analysis techniques and relies on a consolidated mathematical basis since its a priori convergence and stability have been proved. By relying on the capability of FIF to efficiently identify the frequencies embedded in the GNSS raw phase, we define a method based on the FIF-derived spectral features to identify the proper cutoff frequency for phase detrending. To test such a method, we analyze the data acquired from GPS and Galileo signals over Antarctica during the September 2017 storm by the ionospheric scintillation monitor receiver (ISMR) located in Concordia Station (75.10° S, 123.33° E). Different cases of diffraction and refraction effects are provided, showing the capability of the method in deriving a more accurate determination of the σϕ index. We found values of cutoff frequency in the range of 0.73–0.83 Hz, providing further evidence of the inadequacy of the choice of 0.1 Hz, which is often used when dealing with ionospheric scintillation monitoring at high latitudes.
Journal Article
Ionospheric Nowcasting Over Italy Through Data Assimilation: A Synergy Between IRI UP and IONORING
by
Cesaroni, Claudio
,
Pignalberi, Alessio
,
Pezzopane, Michael
in
Algorithms
,
Climate models
,
Data assimilation
2024
An accurate modeling of the ionosphere electron density is pivotal to guarantee the effective operation of communication and navigation systems, particularly during Space Weather events. Despite the crucial contribution of empirical models like the International Reference Ionosphere (IRI), their limitations in predicting ionospheric variability, especially under geomagnetically disturbed conditions, are acknowledged. The solution proposed in this work involves integrating real‐time, spatially distributed ionospheric measurements into climatological models through data assimilation. To enhance our predictive capabilities, we present an upgrade of the IRI UP data‐assimilation method, incorporating real‐time vertical total electron content (vTEC) maps from the IONORING algorithm for nowcasting ionospheric conditions over Italy. This approach involves updating the IRI F2‐layer peak electron density description through ionospheric indices, to finally produce real‐time maps over Italy of the ordinary critical frequency of the F2‐layer, foF2, which is crucial for radio‐propagation applications. The IRI UP–IONORING method performance has been evaluated against different climatological and nowcasting models, and under different Space Weather conditions, by showing promising outcomes which encourages its inclusion in the portfolio of ionospheric real‐time products available over Italy. The validation analysis highlighted also what are the current limitations of the IRI UP–IONORING method, particularly during nighttime for severely disturbed conditions, suggesting avenues for future enhancements.
Journal Article
Ionospheric response to the 2020 Samos earthquake and tsunami
by
Cesaroni, Claudio
,
Hernandez-Pajares, Manuel
,
Belehaki, Anna
in
2. Aeronomy
,
Acoustic propagation
,
Acoustic waves
2024
On 30 October 2020 at 11:51 UT, a magnitude 7.0 earthquake occurred in the Dodecanese sea (37.84°N, 26.81°E, 10 km depth) and generated a tsunami with an observed run-up of more than 1 m on the Turkish coasts. Both the earthquake and the tsunami produced acoustic and gravity waves that propagated upward, triggering co-seismic and co-tsunamic ionospheric disturbances. This paper presents a multi-instrumental study of the ionospheric impact of the earthquake and related tsunami based on ionosonde data, ground-based Global Navigation Satellite Systems (GNSS) data and data from DORIS beacons received by Jason3 in the Mediterranean region. Our study focuses on the Total Electron Content to describe the propagation of co-seismic and co-tsunami ionospheric disturbances (CSID, CTID), possibly related to gravity waves triggered by the earthquake and tsunami. We use simultaneous vertical ionosonde soundings to study the interactions between the upper and lower atmosphere, highlighting the detection of acoustic waves generated by the seismic Rayleigh waves reaching the ionosonde locations and propagating vertically up to the ionosphere. The results of this study provide a detailed picture of the Lithosphere-Atmosphere–Ionosphere coupling in the scarcely investigated Mediterranean region and for a relatively weak earthquake.
Graphical abstract
Journal Article
Space Weather Services for Civil Aviation—Challenges and Solutions
2021
This paper presents a review on the PECASUS service, which provides advisories on enhanced space weather activity for civil aviation. The advisories are tailored according to the Standards and Recommended Practices of the International Civil Aviation Organization (ICAO). Advisories are disseminated in three impact areas: radiation levels at flight altitudes, GNSS-based navigation and positioning, and HF communication. The review, which is based on the experiences of the authors from two years of running pilot ICAO services, describes empirical models behind PECASUS products and lists ground- and space-based sensors, providing inputs for the models and 24/7 manual monitoring activities. As a concrete example of PECASUS performance, its products for a post-storm ionospheric F2-layer depression event are analyzed in more detail. As PECASUS models are particularly tailored to describe F2-layer thinning, they reproduce observations more accurately than the International Reference Ionosphere model (IRI(STORM)), but, on the other hand, it is recognized that the service performance is much affected by the coverage of its input data. Therefore, more efforts will be directed toward systematic measuring of the availability, timeliness and quality of the data provision in the next steps of the service development.
Journal Article
Space Weather Effects Observed in the Northern Hemisphere during November 2021 Geomagnetic Storm: The Impacts on Plasmasphere, Ionosphere and Thermosphere Systems
by
Del Corpo, Alfredo
,
Cafarella, Lili
,
Regi, Mauro
in
Atmosphere
,
Aviation
,
Coronal mass ejection
2022
On 3 November 2021, an interplanetary coronal mass ejection impacted the Earth’s magnetosphere leading to a relevant geomagnetic storm (Kp = 8-), the most intense event that occurred so far during the rising phase of solar cycle 25. This work presents the state of the solar wind before and during the geomagnetic storm, as well as the response of the plasmasphere–ionosphere–thermosphere system in the European sector. To investigate the longitudinal differences, the ionosphere–thermosphere response of the American sector was also analyzed. The plasmasphere dynamics was investigated through field line resonances detected at the European quasi-Meridional Magnetometer Array, while the ionosphere was investigated through the combined use of ionospheric parameters (mainly the critical frequency of the F2 layer, foF2) from ionosondes and Total Electron Content (TEC) obtained from Global Navigation Satellite System receivers at four locations in the European sector, and at three locations in the American one. An original method was used to retrieve aeronomic parameters from observed electron concentration in the ionospheric F region. During the analyzed interval, the plasmasphere, originally in a state of saturation, was eroded up to two Earth’s radii, and only partially recovered after the main phase of the storm. The possible formation of a drainage plume is also observed. We observed variations in the ionospheric parameters with negative and positive phase and reported longitudinal and latitudinal dependence of storm features in the European sector. The relative behavior between foF2 and TEC data is also discussed in order to speculate about the possible role of the topside ionosphere and plasmasphere response at the investigated European site. The American sector analysis revealed negative storm signatures in electron concentration at the F2 region. Neutral composition and temperature changes are shown to be the main reason for the observed decrease of electron concentration in the American sector.
Journal Article