Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
45
result(s) for
"Cesarz, Simone"
Sort by:
Effects of plant species diversity on nematode community composition and diversity in a long-term biodiversity experiment
2021
Diversity loss has been shown to change the soil community; however, little is known about long-term consequences and underlying mechanisms. Here, we investigated how nematode communities are affected by plant species richness and whether this is driven by resource quantity or quality in 15-year-old plant communities of a long-term grassland biodiversity experiment. We extracted nematodes from 93 experimental plots differing in plant species richness, and measured above- and belowground plant biomass production and soil organic carbon concentrations (C
org) as proxies for resource quantity, as well as C/N
leaf ratio and specific root length (SRL) as proxies for resource quality. We found that nematode community composition and diversity significantly differed among plant species richness levels. This was mostly due to positive plant diversity effects on the abundance and genus richness of bacterial-feeding, omnivorous, and predatory nematodes, which benefited from higher shoot mass and soil C
org in species-rich plant communities, suggesting control via resource quantity. In contrast, plant-feeding nematodes were negatively influenced by shoot mass, probably due to higher top–down control by predators, and were positively related to SRL and C/N
leaf, indicating control via resource quality. The decrease of the grazing pressure ratio (plant feeders per root mass) with plant species richness indicated a higher accumulation of plant-feeding nematodes in species-poor plant communities. Our results, therefore, support the hypothesis that soil-borne pathogens accumulate in low-diversity communities over time, while soil mutualists (bacterial-feeding, omnivorous, predatory nematodes) increase in abundance and richness in high-diversity plant communities, which may contribute to the widely-observed positive plant diversity–productivity relationship.
Journal Article
Blind spots in global soil biodiversity and ecosystem function research
2020
Soils harbor a substantial fraction of the world’s biodiversity, contributing to many crucial ecosystem functions. It is thus essential to identify general macroecological patterns related to the distribution and functioning of soil organisms to support their conservation and consideration by governance. These macroecological analyses need to represent the diversity of environmental conditions that can be found worldwide. Here we identify and characterize existing environmental gaps in soil taxa and ecosystem functioning data across soil macroecological studies and 17,186 sampling sites across the globe. These data gaps include important spatial, environmental, taxonomic, and functional gaps, and an almost complete absence of temporally explicit data. We also identify the limitations of soil macroecological studies to explore general patterns in soil biodiversity-ecosystem functioning relationships, with only 0.3% of all sampling sites having both information about biodiversity and function, although with different taxonomic groups and functions at each site. Based on this information, we provide clear priorities to support and expand soil macroecological research.
Journal Article
Drivers and trends of global soil microbial carbon over two decades
by
Cesarz, Simone
,
Xu, Xiaofeng
,
Phillips, Helen R. P.
in
631/114/2397
,
631/158/852
,
631/158/855
2022
Soil microorganisms are central to sustain soil functions and services, like carbon and nutrient cycling. Currently, we only have a limited understanding of the spatial-temporal dynamics of soil microorganisms, restricting our ability to assess long-term effects of climate and land-cover change on microbial roles in soil biogeochemistry. This study assesses the temporal trends in soil microbial biomass carbon and identifies the main drivers of biomass change regionally and globally to detect the areas sensitive to these environmental factors. Here, we combined a global soil microbial biomass carbon data set, random forest modelling, and environmental layers to predict spatial-temporal dynamics of microbial biomass carbon stocks from 1992 to 2013. Soil microbial biomass carbon stocks decreased globally by 3.4 ± 3.0% (mean ± 95% CI) between 1992 and 2013 for the predictable regions, equivalent to 149 Mt being lost over the period, or ~1‰ of soil C. Northern areas with high soil microbial carbon stocks experienced the strongest decrease, mostly driven by increasing temperatures. In contrast, land-cover change was a weaker global driver of change in microbial carbon, but had, in some cases, important regional effects.
Soil microbial carbon is central to soil functions and services, but its spatial-temporal dynamics are unclear. Here the authors show global trends in soil microbial carbon, which suggests a global decrease in soil microbial carbon, mostly driven by temperature increases in northern areas.
Journal Article
The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons
2019
Anthropogenic global change alters the activity and functional composition of soil communities that are responsible for crucial ecosystem functions and services. Two of the most pervasive global change drivers are drought and nutrient enrichment. However, the responses of soil organisms to interacting global change drivers remain widely unknown. We tested the interactive effects of extreme drought and fertilization on soil biota ranging from microbes to invertebrates across seasons. We expected drought to reduce the activity of soil organisms and fertilization to induce positive bottom-up effects
via
increased plant productivity. Furthermore, we hypothesized fertilization to reinforce drought effects through enhanced plant growth, resulting in even drier soil conditions. Our results revealed that drought had detrimental effects on soil invertebrate feeding activity and simplified nematode community structure, whereas soil microbial activity and biomass were unaffected. Microbial biomass increased in response to fertilization, whereas invertebrate feeding activity substantially declined. Notably, these effects were consistent across seasons. The dissimilar responses suggest that soil biota differ vastly in their vulnerability to global change drivers. Thus, important ecosystem processes like decomposition and nutrient cycling, which are driven by the interdependent activity of soil microorganisms and invertebrates, may be disrupted under future conditions.
Journal Article
Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment
by
Cesarz, Simone
,
Cowles, Jane M
,
Pritsch, Karin
in
aboveground-belowground interactions
,
air temperature
,
anthropogenic activities
2015
Anthropogenic changes in biodiversity and atmospheric temperature significantly influence ecosystem processes. However, little is known about potential interactive effects of plant diversity and warming on essential ecosystem properties, such as soil microbial functions and element cycling. We studied the effects of orthogonal manipulations of plant diversity (one, four, and 16 species) and warming (ambient, +1.5°C, and +3°C) on soil microbial biomass, respiration, growth after nutrient additions, and activities of extracellular enzymes in 2011 and 2012 in the BAC (biodiversity and climate) perennial grassland experiment site at Cedar Creek, Minnesota, USA. Focal enzymes are involved in essential biogeochemical processes of the carbon, nitrogen, and phosphorus cycles. Soil microbial biomass and some enzyme activities involved in the C and N cycle increased significantly with increasing plant diversity in both years. In addition, 16-species mixtures buffered warming induced reductions in topsoil water content. We found no interactive effects of plant diversity and warming on soil microbial biomass and growth rates. However, the activity of several enzymes (1,4-β-glucosidase, 1,4-β-N-acetylglucosaminidase, phosphatase, peroxidase) depended on interactions between plant diversity and warming with elevated activities of enzymes involved in the C, N, and P cycles at both high plant diversity and high warming levels. Increasing plant diversity consistently decreased microbial biomass-specific enzyme activities and altered soil microbial growth responses to nutrient additions, indicating that plant diversity changed nutrient limitations and/or microbial community composition. In contrast to our expectations, higher plant diversity only buffered temperature effects on soil water content, but not on microbial functions. Temperature effects on some soil enzymes were greatest at high plant diversity. In total, our results suggest that the fundamental temperature ranges of soil microbial communities may be sufficiently broad to buffer their functioning against changes in temperature and that plant diversity may be a dominant control of soil microbial processes in a changing world.
Journal Article
Plant diversity effects on soil food webs are stronger than those of elevated CO₂ and N deposition in a long-term grassland experiment
by
Cesarz, Simone
,
Reich, Peter B.
,
Eisenhauer, Nico
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Biodiversity
2013
Recent metaanalyses suggest biodiversity loss affects the functioning of ecosystems to a similar extent as other global environmental change agents. However, the abundance and functioning of soil organisms have been hypothesized to be much less responsive to such changes, particularly in plant diversity, than aboveground variables, although tests of this hypothesis are extremely rare. We examined the responses of soil food webs (soil microorganisms, nematodes, microarthropods) to 13-y manipulation of multiple environmental factors that are changing at global scales—specifically plant species richness, atmospheric CO₂, and N deposition—in a grassland experiment in Minnesota. Plant diversity was a strong driver of the structure and functioning of soil food webs through several bottom-up (resource control) effects, whereas CO₂ and N only had modest effects. We found few interactions between plant diversity and CO₂ and N, likely because of weak interactive effects of those factors on resource availability (e.g., root biomass). Plant diversity effects likely were large because high plant diversity promoted the accumulation of soil organic matter in the site's sandy, organic matter-poor soils. Plant diversity effects were not explained by the presence of certain plant functional groups. Our results underline the prime importance of plant diversity loss cascading to soil food webs (density and diversity of soil organisms) and functions. Because the present results suggest prevailing plant diversity effects and few interactions with other global change drivers, protecting plant diversity may be of high priority to maintain the biodiversity and functioning of soils in a changing world.
Journal Article
Spatiotemporal dynamics of abiotic and biotic properties explain biodiversity–ecosystem-functioning relationships
by
Gottschall, Felix
,
Cesarz, Simone
,
Auge, Harald
in
aboveground‐belowground interactions
,
Biodiversity
,
Biomass
2022
There is increasing evidence that spatial and temporal dynamics of biodiversity and ecosystem functions play an essential role in biodiversity–ecosystem-functioning (BEF) relationships. Despite the known importance of soil processes for forest ecosystems, below-ground functions in response to tree diversity and spatiotemporal dynamics of ecological processes and conditions remain poorly described. We propose a novel conceptual framework integrating spatiotemporal dynamics in BEF relationships and hypothesized a positive tree species richness effect on soil ecosystem functions through the spatial and temporal stability of biotic and abiotic soil properties based on species complementarity and asynchrony. We tested this framework within a long-term tree diversity experiment in Central Germany by assessing soil ecosystem functions (soil microbial properties and litter decomposition) and abiotic variables (soil moisture and surface temperature) for two consecutive years in high spatial and temporal resolution. Tree species richness and identity had significant effects on soil properties (e.g., soil microbial biomass). Structural equation modeling revealed that overall soil microbial biomass was partly explained by (1) enhanced temporal stability of soil surface temperature and (2) decreased spatial stability of soil microbial biomass. Overall, spatial stability of soil microbial properties was positively correlated with their temporal stability. These results suggest that spatiotemporal dynamics are indeed crucial determinants in BEF relationships and highlight the importance of vegetation-induced microclimatic conditions for stable provisioning of soil ecosystem functions and services.
Journal Article
Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations
2017
The magnitude and frequency of extreme weather events are predicted to increase in the future due to ongoing climate change. In particular, floods and droughts resulting from climate change are thought to alter the ecosystem functions and stability. However, knowledge of the effects of these weather events on soil fauna is scarce, although they are key towards functioning of terrestrial ecosystems. Plant species richness has been shown to affect the stability of ecosystem functions and food webs. Here, we used the occurrence of a natural flood in a biodiversity grassland experiment that was followed by a simulated summer drought experiment, to investigate the interactive effects of plant species richness, a natural flood, and a subsequent summer drought on nematode communities. Three and five months after the natural flooding, effects of flooding severity were still detectable in the belowground system. We found that flooding severity decreased soil nematode food-web structure (loss of K-strategists) and the abundance of plant feeding nematodes. However, high plant species richness maintained higher diversity and abundance of higher trophic levels compared to monocultures throughout the flood. The subsequent summer drought seemed to be of lower importance but reversed negative flooding effects in some cases. This probably occurred because the studied grassland system is well adapted to drought, or because drought conditions alleviated the negative impact of long-term soil waterlogging. Using soil nematodes as indicator taxa, this study suggests that high plant species richness can maintain soil food web complexity after consecutive environmental perturbations.
Journal Article
Tree species identity determines wood decomposition via microclimatic effects
by
Gottschall, Felix
,
Cesarz, Simone
,
Davids, Sophie
in
aboveground–belowground interactions
,
Biodiversity
,
biodiversity–ecosystem functioning
2019
Empirical evidence suggests that the rich set of ecosystem functions and nature's contributions to people provided by forests depends on tree diversity. Biodiversity–ecosystem functioning research revealed that not only species richness per se but also other facets of tree diversity, such as tree identity, have to be considered to understand the underlying mechanisms. One important ecosystem function in forests is the decomposition of deadwood that plays a vital role in carbon and nutrient cycling and is assumed to be determined by above‐ and belowground interactions. However, the actual influence of tree diversity on wood decay in forests remains inconclusive. Recent studies suggest an important role of microclimate and advocate a systematical consideration of small‐scale environmental conditions. We studied the influence of tree species richness, tree species identity, and microclimatic conditions on wood decomposition in a 12‐year‐old tree diversity experiment in Germany, containing six native species within a tree species richness gradient. We assessed wood mass loss, soil microbial properties, and soil surface temperature in high temporal resolution. Our study shows a significant influence of tree species identity on all three variables. The presence of Scots pine strongly increased wood mass loss, while the presence of Norway spruce decreased it. This could be attributed to structural differences in the litter layer that were modifying the capability of plots to hold the soil surface temperature at night, consequently leading to enhanced decomposition rates in plots with higher nighttime surface temperatures. Therefore, our study confirmed the critical role of microclimate for wood decomposition in forests and showed that soil microbial properties alone were not sufficient to predict wood decay. We conclude that tree diversity effects on ecosystem functions may include different biodiversity facets, such as tree identity, tree traits, and functional and structural diversity, in influencing the abiotic and biotic soil properties. We studied the influence of tree species richness, tree species identity, soil microbial properties, and microclimatic conditions on wood decomposition in a temperate tree diversity experiment. We found significant tree species identity effects on wood decomposition due to modified nighttime soil surface temperatures. Our study confirmed the critical role of microclimate for wood decomposition in forests and showed that soil microbial properties alone were not sufficient to predict wood decay.
Journal Article