Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
43
result(s) for
"Cetin-Karayumak, Suheyla"
Sort by:
Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters
2019
A joint and integrated analysis of multi-site diffusion MRI (dMRI) datasets can dramatically increase the statistical power of neuroimaging studies and enable comparative studies pertaining to several brain disorders. However, dMRI data sets acquired on multiple scanners cannot be naively pooled for joint analysis due to scanner specific nonlinear effects as well as differences in acquisition parameters. Consequently, for joint analysis, the dMRI data has to be harmonized, which involves removing scanner-specific differences from the raw dMRI signal. In this work, we propose a dMRI harmonization method that is capable of removing scanner-specific effects, while accounting for minor differences in acquisition parameters such as b-value, spatial resolution and number of gradient directions. We validate our algorithm on dMRI data acquired from two sites: Philadelphia Neurodevelopmental Cohort (PNC) with 800 healthy adolescents (ages 8–22 years) and Brigham and Women's Hospital (BWH) with 70 healthy subjects (ages 14–54 years). In particular, we show that gender and age-related maturation differences in different age groups are preserved after harmonization, as measured using effect sizes (small, medium and large), irrespective of the test sample size. Since we use matched control subjects from different scanners to estimate scanner-specific effects, our goal in this work is also to determine the minimum number of well-matched subjects needed from each site to achieve best harmonization results. Our results indicate that at-least 16 to 18 well-matched healthy controls from each site are needed to reliably capture scanner related differences. The proposed method can thus be used for retrospective harmonization of raw dMRI data across sites despite differences in acquisition parameters, while preserving inter-subject anatomical variability.
•A multi-site diffusion MRI harmonization method that can remove scanner-specific effects across sites.•The proposed method accounts for minor differences in acquisition parameters such as b-value, spatial resolution and number of gradient directions.•Biological differences due to gender and age in different groups are preserved.•At least 16 to 18 well-matched healthy controls from each site are needed to reliably capture scanner related differences.
Journal Article
White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study
2020
Several prominent theories of schizophrenia suggest that structural white matter pathologies may follow a developmental, maturational, and/or degenerative process. However, a lack of lifespan studies has precluded verification of these theories. Here, we analyze the largest sample of carefully harmonized diffusion MRI data to comprehensively characterize age-related white matter trajectories, as measured by fractional anisotropy (FA), across the course of schizophrenia. Our analysis comprises diffusion scans of 600 schizophrenia patients and 492 healthy controls at different illness stages and ages (14–65 years), which were gathered from 13 sites. We determined the pattern of age-related FA changes by cross-sectionally assessing the timing of the structural neuropathology associated with schizophrenia. Quadratic curves were used to model between-group FA differences across whole-brain white matter and fiber tracts at each age; fiber tracts were then clustered according to both the effect-sizes and pattern of lifespan white matter FA differences. In whole-brain white matter, FA was significantly lower across the lifespan (up to 7%; p < 0.0033) and reached peak maturation younger in patients (27 years) compared to controls (33 years). Additionally, three distinct patterns of neuropathology emerged when investigating white matter fiber tracts in patients: (1) developmental abnormalities in limbic fibers, (2) accelerated aging and abnormal maturation in long-range association fibers, (3) severe developmental abnormalities and accelerated aging in callosal fibers. Our findings strongly suggest that white matter in schizophrenia is affected across entire stages of the disease. Perhaps most strikingly, we show that white matter changes in schizophrenia involve dynamic interactions between neuropathological processes in a tract-specific manner.
Journal Article
Improving the predictive potential of diffusion MRI in schizophrenia using normative models—Towards subject‐level classification
2021
Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group‐level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject‐level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject‐level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free‐water) dMRI measures, were calculated by means of age and sex‐adjusted z‐scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z‐scores than are found with raw values (p < .001), predictions based on summary z‐score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject‐level classification. We use a large (n = 1113) harmonized diffusion MRI dataset of individuals diagnosed with schizophrenia and healthy controls, in order to study the predictive performance of a normative modeling approach. This approach compares each individual with distribution derived from healthy controls to derive measures of deviation from the normal distribution. Our results show that combining deviation information from different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance, and could therefore aid in subject‐level classification.
Journal Article
Elucidating the relationship between white matter structure, demographic, and clinical variables in schizophrenia—a multicenter harmonized diffusion tensor imaging study
by
Lee, Jungsun
,
Walther, Sebastian
,
Baxi Madhura
in
Anisotropy
,
Antipsychotics
,
Cognitive ability
2021
White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) “Which clinical variables explain WM abnormalities?”. (2) “Does the degree of WM abnormalities predict symptom severity?”. (3) “Does sex influence any of those relationships?”. Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.
Journal Article
Longitudinal trajectory of response to electroconvulsive therapy associated with transient immune response & white matter alteration post-stimulation
2022
Research suggests electroconvulsive therapy (ECT) induces an acute neuroinflammatory response and changes in white matter (WM) structural connectivity. However, whether these processes are related, either to each other or to eventual treatment outcomes, has yet to be determined. We examined the relationship between levels of peripheral pro-inflammatory cytokines and diffusion imaging-indexed changes in WM microstructure in individuals with treatment-resistant depression (TRD) who underwent ECT. Forty-two patients were assessed at baseline, after their second ECT (T2), and after completion of ECT (T3). A Montgomery Åsberg Depression Rating Scale improvement of >50% post-ECT defined ECT-responders (
n
= 19) from non-responders (
n
= 23). Thirty-four controls were also examined. Tissue-specific fractional anisotropy (FAt) was estimated using diffusion imaging data and the Free-Water method in 17 WM tracts. Inflammatory panels were evaluated from peripheral blood. Cytokines were examined to characterize the association between potential ECT-induced changes in an inflammatory state and WM microstructure. Longitudinal trajectories of both measures were also examined separately for ECT-responders and non-responders. Patients exhibited elevated Interleukin-8 (IL-8) levels at baseline compared to controls. In patients, correlations between IL-8 and FAt changes from baseline to T2 were significant in the positive direction in the right superior longitudinal fasciculus (R-SLF) and right cingulum (R-CB) (
p
sig
= 0.003). In these tracts, linear mixed-effects models revealed that trajectories of IL-8 and FAt were significantly positively correlated across all time points in responders, but not non-responders (R-CB-p = .001; R-SLF-p = 0.008). Our results suggest that response to ECT in TRD may be mediated by IL-8 and WM microstructure.
Journal Article
Studying pre-treatment and ketamine-induced changes in white matter microstructure in the context of ketamine’s antidepressant effects
2020
Ketamine is increasingly being used as a therapeutic for treatment-resistant depression (TRD), yet the effects of ketamine on the human brain remain largely unknown. This pilot study employed diffusion magnetic resonance imaging (dMRI) to examine relationships between ketamine treatment and white matter (WM) microstructure, with the aim of increasing the current understanding of ketamine’s neural mechanisms of action in humans. Longitudinal dMRI data were acquired from 13 individuals with TRD two hours prior to (pre-infusion), and four hours following (post-infusion), an intravenous ketamine infusion. Free-water imaging was employed to quantify cerebrospinal fluid-corrected mean fractional anisotropy (FA) in 15 WM bundles pre- and post-infusion. Analyses revealed that higher pre-infusion FA in the left cingulum bundle and the left superior longitudinal fasciculus was associated with greater depression symptom improvement 24 h post-ketamine. Moreover, four hours after intravenous administration of ketamine, FA rapidly increased in numerous WM bundles in the brain; this increase was significantly associated with 24 h symptom improvement in select bundles. Overall, the results of this preliminary study suggest that WM properties, as measured by dMRI, may have a potential impact on clinical improvement following ketamine. Ketamine administration additionally appears to be associated with rapid WM diffusivity changes, suggestive of rapid changes in WM microstructure. This study thus points to pre-treatment WM structure as a potential factor associated with ketamine’s clinical efficacy, and to post-treatment microstructural changes as a candidate neuroimaging marker of ketamine’s cellular mechanisms.
Journal Article
Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort
by
Cocchi Luca
,
Cropley, Vanessa L
,
Bousman Chad
in
Anisotropy
,
Brain mapping
,
Magnetic resonance imaging
2021
The heterogeneity of schizophrenia has defied efforts to derive reproducible and definitive anatomical maps of structural brain changes associated with the disorder. We aimed to map deviations from normative ranges of brain structure for individual patients and evaluate whether the loci of individual deviations recapitulated group-average brain maps of schizophrenia pathology. For each of 48 white matter tracts and 68 cortical regions, normative percentiles of variation in fractional anisotropy (FA) and cortical thickness (CT) were established using diffusion-weighted and structural MRI from healthy adults (n = 195). Individuals with schizophrenia (n = 322) were classified as either within the normative range for healthy individuals of the same age and sex (5–95% percentiles), infra-normal (<5% percentile) or supra-normal (>95% percentile). Repeating this classification for each tract and region yielded a deviation map for each individual. Compared to the healthy comparison group, the schizophrenia group showed widespread reductions in FA and CT, involving virtually all white matter tracts and cortical regions. Paradoxically, however, no more than 15–20% of patients deviated from the normative range for any single tract or region. Furthermore, 79% of patients showed infra-normal deviations for at least one locus (healthy individuals: 59 ± 2%, p < 0.001). Thus, while infra-normal deviations were common among patients, their anatomical loci were highly inconsistent between individuals. Higher polygenic risk for schizophrenia associated with a greater number of regions with infra-normal deviations in CT (r = −0.17, p = 0.006). We conclude that anatomical loci of schizophrenia-related changes are highly heterogeneous across individuals to the extent that group-consensus pathological maps are not representative of most individual patients. Normative modeling can aid in parsing schizophrenia heterogeneity and guiding personalized interventions.
Journal Article
TractCloud‐FOV: Deep Learning‐Based Robust Tractography Parcellation in Diffusion MRI With Incomplete Field of View
by
Rathi, Yogesh
,
Cetin‐Karayumak, Suheyla
,
Xue, Tengfei
in
Adult
,
Automation
,
Brain - diagnostic imaging
2025
Tractography parcellation classifies streamlines reconstructed from diffusion MRI into anatomically defined fiber tracts for clinical and research applications. However, clinical scans often have incomplete fields of view (FOV) where brain regions are partially imaged, leading to partial, or truncated fiber tracts. To address this challenge, we introduce TractCloud‐FOV, a deep learning framework that robustly parcellates tractography under conditions of incomplete FOV. We propose a novel training strategy, FOV‐Cut Augmentation (FOV‐CA), in which we synthetically cut tractograms to simulate a spectrum of real‐world inferior FOV cutoff scenarios. This data augmentation approach enriches the training set with realistic truncated streamlines, enabling the model to achieve superior generalization. We evaluate the proposed TractCloud‐FOV on both synthetically cut tractography and two real‐life datasets with incomplete FOV. TractCloud‐FOV significantly outperforms several state‐of‐the‐art methods on all testing datasets in terms of streamline classification accuracy, generalization ability, tract anatomical depiction, and computational efficiency. Overall, TractCloud‐FOV achieves efficient and consistent tractography parcellation in diffusion MRI with incomplete FOV. We propose a robust deep learning framework, TractCloud‐FOV, to achieve robust and effective tractography parcellation in diffusion MRI with an incomplete field of view by introducing a synthetic data augmentation strategy to simulate real‐world inferior FOV cutoff scenarios.
Journal Article
Large-Scale Evidence for an Association Between Peripheral Inflammation and White Matter Free Water in Schizophrenia and Healthy Individuals
2021
Abstract
Introduction
Clarifying the role of neuroinflammation in schizophrenia is subject to its detection in the living brain. Free-water (FW) imaging is an in vivo diffusion-weighted magnetic resonance imaging (dMRI) technique that measures water molecules freely diffusing in the brain and is hypothesized to detect inflammatory processes. Here, we aimed to establish a link between peripheral markers of inflammation and FW in brain white matter.
Methods
All data were obtained from the Australian Schizophrenia Research Bank (ASRB) across 5 Australian states and territories. We first tested for the presence of peripheral cytokine deregulation in schizophrenia, using a large sample (N = 1143) comprising the ASRB. We next determined the extent to which individual variation in 8 circulating pro-/anti-inflammatory cytokines related to FW in brain white matter, imaged in a subset (n = 308) of patients and controls.
Results
Patients with schizophrenia showed reduced interleukin-2 (IL-2) (t = −3.56, P = .0004) and IL-12(p70) (t = −2.84, P = .005) and increased IL-6 (t = 3.56, P = .0004), IL-8 (t = 3.8, P = .0002), and TNFα (t = 4.30, P < .0001). Higher proinflammatory signaling of IL-6 (t = 3.4, P = .0007) and TNFα (t = 2.7, P = .0007) was associated with higher FW levels in white matter. The reciprocal increases in serum cytokines and FW were spatially widespread in patients encompassing most major fibers; conversely, in controls, the relationship was confined to the anterior corpus callosum and thalamic radiations. No relationships were observed with alternative dMRI measures, including the fractional anisotropy and tissue-related FA.
Conclusions
We report widespread deregulation of cytokines in schizophrenia and identify inflammation as a putative mechanism underlying increases in brain FW levels.
Journal Article
Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results
2020
Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.
Journal Article