Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
50
result(s) for
"Chadban, Steven J"
Sort by:
TLR4 Activation Promotes Podocyte Injury and Interstitial Fibrosis in Diabetic Nephropathy
2014
Toll like receptor (TLR) 4 has been reported to promote inflammation in diabetic nephropathy. However the role of TLR4 in the complicated pathophysiology of diabetic nephropathy is not understood. In this study, we report elevated expression of TLR4, its endogenous ligands and downstream cytokines, chemokines and fibrogenic genes in diabetic nephropathy in WT mice with streptozotocin (STZ) diabetes. Subsequently, we demonstrated that TLR4-/- mice were protected against the development of diabetic nephropathy, exhibiting less albuminuria, inflammation, glomerular hypertrophy and hypercellularity, podocyte and tubular injury as compared to diabetic wild-type controls. Marked reductions in interstitial collagen deposition, myofibroblast activation (α-SMA) and expression of fibrogenic genes (TGF-β and fibronectin) were also evident in TLR4 deficient mice. Consistent with our in vivo results, high glucose directly promoted TLR4 activation in podocytes and tubular epithelial cells in vitro, resulting in NF-κB activation and consequent inflammatory and fibrogenic responses. Our data indicate that TLR4 activation may promote inflammation, podocyte and tubular epithelial cell injury and interstitial fibrosis, suggesting TLR4 is a potential therapeutic target for diabetic nephropathy.
Journal Article
Interleukin 17A promotes diabetic kidney injury
2019
The role of the pro-inflammatory cytokine IL-17 in the pathogenesis of numerous inflammatory disorders is well-documented, but conflicting results are reported for its role in diabetic nephropathy. Here we examined the role of IL-17 signalling in a model of streptozotocin-induced diabetic nephropathy through IL-17 knockout mice, administration of neutralising monoclonal anti-IL-17 antibody and
in vitro
examination of gene expression of renal tubular cells and podocytes under high glucose conditions with or without recombinant IL-17. IL-17 deficient mice were protected against progression of diabetic nephropathy, exhibiting reduced albuminuria, glomerular damage, macrophage accumulation and renal fibrosis at 12 weeks and 24 weeks. Administration of anti-IL-17 monoclonal antibody to diabetic wild-type mice was similarly protective. IL-17 deficiency also attenuated up-regulation of pro-inflammatory and pro-fibrotic genes including IL-6, TNF-α, CCL2, CXCL10 and TGF-β in diabetic kidneys.
In vitro
co-stimulation with recombinant IL-17 and high glucose were synergistic in increasing the expression of pro-inflammatory genes in both cultured renal tubular cells and podocytes. We conclude that absence of IL-17 signalling is protective against streptozotocin-induced diabetic nephropathy, thus implying a pro-inflammatory role of IL-17 in its pathogenesis. Targeting the IL-17 axis may represent a novel therapeutic approach in the treatment of this disorder.
Journal Article
Dietary protein increases T-cell-independent sIgA production through changes in gut microbiota-derived extracellular vesicles
by
Macia, Laurence
,
Pinget, Gabriela Veronica
,
Taitz, Jemma
in
631/250/2152/2153/1291
,
631/250/347
,
631/326/2565/2134
2022
Secretory IgA is a key mucosal component ensuring host-microbiota mutualism. Here we use nutritional geometry modelling in mice fed 10 different macronutrient-defined, isocaloric diets, and identify dietary protein as the major driver of secretory IgA production. Protein-driven secretory IgA induction is not mediated by T-cell-dependent pathways or changes in gut microbiota composition. Instead, the microbiota of high protein fed mice produces significantly higher quantities of extracellular vesicles, compared to those of mice fed high-carbohydrate or high-fat diets. These extracellular vesicles activate Toll-like receptor 4 to increase the epithelial expression of IgA-inducing cytokine, APRIL, B cell chemokine, CCL28, and the IgA transporter, PIGR. We show that succinate, produced in high concentrations by microbiota of high protein fed animals, increases generation of reactive oxygen species by bacteria, which in turn promotes extracellular vesicles production. Here we establish a link between dietary macronutrient composition, gut microbial extracellular vesicles release and host secretory IgA response.
Secretory IgA plays vital roles interfacing between the host immune system and the resident microbiota at the mucosal surface. Here the authors explore the effect of dietary protein on the production of secretory IgA, driven by the production of extracellular vesicles by the intestinal microbiota.
Journal Article
TLR4 activation mediates kidney ischemia/reperfusion injury
2007
Ischemia/reperfusion injury (IRI) may activate innate immunity through the engagement of TLRs by endogenous ligands. TLR4 expressed within the kidney is a potential mediator of innate activation and inflammation. Using a mouse model of kidney IRI, we demonstrated a significant increase in TLR4 expression by tubular epithelial cells (TECs) and infiltrating leukocytes within the kidney following ischemia. TLR4 signaling through the MyD88-dependent pathway was required for the full development of kidney IRI, as both TLR4(-/-) and MyD88(-/-) mice were protected against kidney dysfunction, tubular damage, neutrophil and macrophage accumulation, and expression of proinflammatory cytokines and chemokines. In vitro, WT kidney TECs produced proinflammatory cytokines and chemokines and underwent apoptosis after ischemia. These effects were attenuated in TLR4(-/-) and MyD88(-/-) TECs. In addition, we demonstrated upregulation of the endogenous ligands high-mobility group box 1 (HMGB1), hyaluronan, and biglycan, providing circumstantial evidence that one or more of these ligands may be the source of TLR4 activation. To determine the relative contribution of TLR4 expression by parenchymal cells or leukocytes to kidney damage during IRI, we generated chimeric mice. TLR4(-/-) mice engrafted with WT hematopoietic cells had significantly lower serum creatinine and less tubular damage than WT mice reconstituted with TLR4(-/-) BM, suggesting that TLR4 signaling in intrinsic kidney cells plays the dominant role in mediating kidney damage.
Journal Article
Short-chain fatty acids directly exert anti-inflammatory responses in podocytes and tubular epithelial cells exposed to high glucose
by
Loh, Yik Wen
,
Chadban, Steven J.
,
Li, Yan Jun
in
Acetic acid
,
Animals
,
Cell and Developmental Biology
2023
Aims: Gut-microbiome derived short-chain fatty acids exert anti-inflammatory effects and delay progression of kidney disease in diabetic nephropathy. The aim of this study was to examine the impact in vivo and in vitro of short-chain fatty acid treatment on cellular pathways involved in the development of experimental diabetic nephropathy. Methods: To determine the effect of short-chain fatty acids in diabetic nephropathy, we compared wildtype, GPR43−/− and GPR109A−/− mice diabetic mice treated with acetate or butyrate and assessed variables of kidney damage. We also examined the impact of short-chain fatty acid treatment on gene expression in renal tubular cells and podocytes under high glucose conditions. Results: Short-chain fatty acid treatment with acetate or butyrate protected wild-type mice against development of diabetic nephropathy, exhibiting less glomerular hypertrophy, hypercellularity and interstitial fibrosis compared to diabetic controls. Acetate and butyrate treatment did not provide the same degree of protection in diabetic GPR43−/− and GPR109A−/− diabetic mice respectively. Consistent with our in vivo results, expression of pro-inflammatory genes in tubular epithelial cells exposed to high glucose were attenuated by acetate and butyrate treatment. Acetate did not reduce inflammatory or fibrotic responses in glucose stimulated GPR43−/− TECs. Butyrate mediated inhibition of pro-fibrotic gene expression in TECs through GPR109A, and in podocytes via GPR43. Conclusion: SCFAs protect against progression of diabetic nephropathy and diminish podocyte and tubular epithelial injury and interstitial fibrosis via direct, GPR-pathway dependent effects on intrinsic kidney cells. GPR43 and GPR109A are critical to short-chain fatty acid mediated reno-protection and have potential to be harnessed as a therapeutic target in diabetic nephropathy.
Journal Article
Fiber Derived Microbial Metabolites Prevent Acute Kidney Injury Through G-Protein Coupled Receptors and HDAC Inhibition
by
Macia, Laurence
,
Mackay, Charles R.
,
Singer, Julian
in
acute kidney injury
,
Animal models
,
Antibodies
2021
Short-chain fatty acids (SCFA) derived from gut microbial fermentation of fiber have been shown to exert anti-inflammatory and immune-modulatory properties in acute kidney injury (AKI). However the direct mechanistic link between SCFAs, diet and the gut microbiome is yet to be established. Using the murine model of folic-acid nephropathy (FAN), we examined the effect of dietary fiber on development of AKI (day 2) and subsequent chronic kidney disease (CKD) (day 28). FAN was induced in wild-type and knockout mice lacking G protein–coupled receptors GPR41 , GPR43 , or GPR109A . Mice were randomized to high-fiber or normal-chow diets, or SCFAs in drinking water. We used 16S rRNA sequencing to assess the gut microbiome and 1 H-NMR spectroscopy for metabolic profiles. Mice fed high-fiber were partially protected against development of AKI and subsequent CKD, exhibiting better kidney function throughout, less tubular injury at day 2 and less interstitial fibrosis and chronic inflammation at day 28 vs controls. Fiber modified the gut microbiome and alleviated dysbiosis induced by AKI, promoting expansion of SCFA-producing bacteria Bifidobacterium and Prevotella , which increased fecal and serum SCFA concentrations. SCFA treatment achieved similar protection, but not in the absence of GPR41 or GPR109A. Histone deacetylase activity (HDAC) was inhibited in kidneys of high-fiber fed mice. We conclude that dietary manipulation of the gut microbiome protects against AKI and subsequent CKD, mediated by HDAC inhibition and activation of GPR41 and GPR109A by SCFAs. This study highlights the potential of the gut microbiome as a modifiable target in the prevention of AKI.
Journal Article
Rapamycin and inulin for third-dose vaccine response stimulation (RIVASTIM): Inulin – study protocol for a pilot, multicentre, randomised, double-blinded, controlled trial of dietary inulin to improve SARS-CoV-2 vaccine response in kidney transplant recipients
by
Singer, Julian
,
Chadban, Steven J
,
Wu, Huiling
in
Coronaviruses
,
COVID-19
,
COVID-19 - prevention & control
2022
IntroductionKidney transplant recipients (KTRs) are at an increased risk of hospitalisation and death from COVID-19. Vaccination against SARS-CoV-2 is our primary risk mitigation strategy, yet vaccine effectiveness in KTRs is suboptimal. Strategies to enhance vaccine efficacy are therefore required. Current evidence supports the role of the gut microbiota in shaping the immune response to vaccination. Gut dysbiosis is common in KTRs and is a potential contributor to impaired COVID-19 vaccine responses. We hypothesise that dietary fibre supplementation will attenuate gut dysbiosis and promote vaccine responsiveness in KTRs.Methods and analysisRapamycin and inulin for third-dose vaccine response stimulation-inulin is a multicentre, randomised, prospective, double-blinded, placebo-controlled pilot trial examining the effect of dietary inulin supplementation prior to a third dose of COVID-19 vaccine in KTRs who have failed to develop protective immunity following a 2-dose COVID-19 vaccine schedule. Participants will be randomised 1:1 to inulin (active) or maltodextrin (placebo control), administered as 20 g/day of powdered supplement dissolved in water, for 4 weeks prior to and following vaccination. The primary outcome is the proportion of participants in each trial arm that achieve in vitro neutralisation of live SARS-CoV-2 virus at 4 weeks following a third dose of COVID-19 vaccine. Secondary outcomes include the safety and tolerability of dietary inulin, the diversity and differential abundance of gut microbiota, and vaccine-specific immune cell populations and responses.Ethics and disseminationEthics approval was obtained from the Central Adelaide Local Health Network (CALHN) Human Research Ethics Committee (HREC) (approval number: 2021/HRE00354) and the Sydney Local Health District (SHLD) HREC (approval numbers: X21-0411 and 2021/STE04280). Results of this trial will be published following peer-review and presented at scientific meetings and congresses.Trial registration numberACTRN12621001465842.
Journal Article
Rapamycin and inulin for booster vaccine response stimulation (RIVASTIM)—rapamycin: study protocol for a randomised, controlled trial of immunosuppression modification with rapamycin to improve SARS-CoV-2 vaccine response in kidney transplant recipients
by
Grubor-Bauk, Branka
,
Hissaria, Pravin
,
Singer, Julian
in
Antibodies
,
Biomedicine
,
Clinical trials
2022
Kidney transplant recipients are at an increased risk of severe COVID-19-associated hospitalisation and death. Vaccination has been a key public health strategy to reduce disease severity and infectivity, but the effectiveness of COVID vaccines is markedly reduced in kidney transplant recipients. Urgent strategies to enhance vaccine efficacy are needed.
Methods:
RIVASTIM-rapamycin is a multicentre, randomised, controlled trial examining the effect of immunosuppression modification prior to a third dose of COVID-19 vaccine in kidney transplant recipients who have failed to develop protective immunity to a 2-dose COVID-19 vaccine schedule. Participants will be randomised 1:1 to either remain on standard of care immunosuppression with tacrolimus, mycophenolate, and prednisolone (control) or cease mycophenolate and commence sirolimus (intervention) for 4 weeks prior to and following vaccination. The primary outcome is the proportion of participants in each trial arm who develop protective serological neutralisation of live SARS-CoV-2 virus at 4–6 weeks following a third COVID-19 vaccination. Secondary outcomes include SARS-CoV-receptor binding domain IgG, vaccine-specific immune cell populations and responses, and the safety and tolerability of sirolimus switch.
Discussion:
Immunosuppression modification strategies may improve immunological vaccine response. We hypothesise that substituting the mTOR inhibitor sirolimus for mycophenolate in a triple drug regimen will enhance humoral and cell-mediated responses to COVID vaccination for kidney transplant recipients.
Trial registration:
Australia New Zealand Clinical Trials Registry ACTRN12621001412820. Registered on 20 October 2021;
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382891&isReview=true
Journal Article
A Global Survey of Self-Reported Cancer Screening Practices by Health Professionals for Kidney Transplant Candidates and Recipients
2025
Cancer is a major cause of morbidity and mortality in kidney transplant recipients. Health professionals have a critical role in promoting cancer screening participation. From March 2023 to February 2024, an online survey was distributed to kidney transplant health professionals globally to assess their screening practices. We compared their reported screening practices to recommended guidelines and analyzed factors associated with these practices. We received 97 responses, and most were nephrologists (70%), and around 80% recommended breast, colorectal, and cervical cancer screening for kidney transplant candidates and recipients. About 85% recommended lung cancer screening for higher-risk individuals. Skin cancer screening recommendations varied from 69% for transplant candidates and 84% for recipients. Self-reported cervical cancer screening practices were most concordant with recommended guidelines, followed by breast and skin cancers. Barriers reported included a lack of cancer screening awareness (28%), perceived financial constraints (35%), and deficient structured cancer screening systems (51%). Professionals from high-income countries were more likely to advise screening than those from lower-middle-income countries, with odds ratios ranging from 2.9 to 12.3. Most health professionals reported recommending cancer screening for kidney transplant candidates and recipients. However, recommendations were influenced by costs and service delivery gaps within health systems.
Journal Article
Statistical analysis plan for Better Evidence for Selecting Transplant Fluids (BEST-Fluids): a randomised controlled trial of the effect of intravenous fluid therapy with balanced crystalloid versus saline on the incidence of delayed graft function in deceased donor kidney transplantation
2022
Background
Delayed graft function, or the requirement for dialysis due to poor kidney function, is a frequent complication of deceased donor kidney transplantation that is associated with inferior outcomes. Intravenous fluids with a high chloride content, such as isotonic sodium chloride (0.9% saline), are widely used in transplantation but may increase the risk of poor kidney function. The primary objective of the BEST-Fluids trial is to compare the effect of a balanced low-chloride crystalloid, Plasma-Lyte 148 (Plasmalyte), versus 0.9% saline on the incidence of DGF in deceased donor kidney transplant recipients. This article describes the statistical analysis plan for the trial.
Methods and design
BEST-Fluids is an investigator-initiated, pragmatic, registry-based, multi-centre, double-blind, randomised controlled trial. Eight hundred patients (adults and children) in Australia and New Zealand with end-stage kidney disease admitted for a deceased donor kidney transplant were randomised to intravenous fluid therapy with Plasmalyte or 0.9% saline in a 1:1 ratio using minimization. The primary outcome is delayed graft function (dialysis within seven days post-transplant), which will be modelled using a log-binomial generalised linear mixed model with fixed effects for treatment group, minimization variables, and ischaemic time and a random intercept for study centre. Secondary outcomes including early kidney transplant function (a ranked composite of dialysis duration and the rate of graft function recovery), treatment for hyperkalaemia, and graft survival and will be analysed using a similar modelling approach appropriate for the type of outcome.
Discussion
BEST-Fluids will determine whether Plasmalyte reduces the incidence of DGF and has a beneficial effect on early kidney transplant outcomes relative to 0.9% saline and will inform clinical guidelines on intravenous fluids for deceased donor kidney transplantation. The statistical analysis plan describes the analyses to be undertaken and specified before completion of follow-up and locking the trial databases.
Trial registration
Australian New Zealand Clinical Trials Registry
ACTRN12617000358347
. Prospectively registered on 8 March 2017
ClinicalTrials.gov
identifier
NCT03829488
. Registered on 4 February 2019
Journal Article