Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
36 result(s) for "Chadwick, Grayson L."
Sort by:
Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota , none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.
Single cell activity reveals direct electron transfer in methanotrophic consortia
Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer. The anaerobic oxidation of methane in marine sediments is performed by consortia of methane-oxidizing archaea and sulfate-reducing bacteria; an examination of the role of interspecies spatial positioning on single cell activity reveals that interspecies electron transfer may overcome the requirement for close spatial proximity, a proposition supported by large multi-haem cytochromes in ANME-2 genomes as well as redox-active electron microscopy staining. A novel mechanism for microbial cooperation Anaerobic oxidation of methane in marine sediments, of central importance for the global methane cycle, is a collaborative process performed by consortia of methane-oxidizing archaea and sulfate-reducing bacteria. The biochemical basis of this syntrophic relationship is not fully understood. It has been suggested that exchange of a diffusible metabolite between the cooperating microbes is essential, but two groups reporting in this issue of Nature challenge this idea. Victoria Orphan and colleagues examined the biosynthetic activity at the single-cell level in microbial consortia prepared from sediment sampled from an active methane seep at Hydrate Ridge North in the Northwest Pacific. They find that cell activities are independent of the distance between syntrophic partners, which is inconsistent with a model involving the diffusion of intermediates over short distances. Instead, direct electron transfer between archaea and bacteria, mediated by large multi-haem cytochromes produced by ANME-2 archaea, is a central mechanism of their interaction. Gunter Wegener et al . show that interspecies exchange of electrons in microbial samples derived from hydrothermal vent sediments from Guaymas Basin in the Gulf of California is most probably through direct transfer of electrons by means of 'nanowires' connecting the two partners. These authors propose that electron transfer is mediated by pili-like structures and outer-membrane multi-haem cytochromes.
Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction
The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane.
Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics
Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl–coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota.
NanoSIMS imaging reveals metabolic stratification within current-producing biofilms
Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 μm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-μm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 μm) and fully grown biofilms (>20 μm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.
Methanogenesis marker 16 metalloprotein is the primary coenzyme M synthase in Methanosarcina acetivorans
2-mercaptoethanesulfonate (Coenzyme M, CoM) is an organic sulfur-containing cofactor used for hydrocarbon metabolism in archaea and bacteria. In archaea, CoM serves as an alkyl group carrier for enzymes belonging to the alkyl-CoM reductase family, including methyl-CoM reductase, which catalyzes methane formation in methanogens. Two pathways for the biosynthesis of CoM have been identified in methanogenic archaea. The initial steps of these pathways are distinct but the last two reactions, leading up to CoM formation, are universally conserved. The final step is proposed to be mediated by methanogenesis marker metalloprotein 16 (MMP16), a putative sulfurtransferase, that replaces the aldehyde group of sulfoacetaldehyde with a thiol to generate CoM. Based on prior research, assignment of MMP16 as CoM synthase (ComF) is not widely accepted as deletion mutants have been shown to grow without any CoM dependence. Here, we investigate the role of MMP16 in the model methanogen, Methanosarcina acetivorans. We show that a mutant lacking MMP16 has a CoM-dependent growth phenotype and a global transcriptomic profile reflective of CoM-starvation. Additionally, the ∆ MMP16 mutant is a CoM auxotroph in sulfide-free medium. These data reinforce prior claims that MMP16 is a bona fide ComF but point to backup pathway(s) that can conditionally compensate for its absence. We found that L-aspartate semialdehyde sulfurtransferase (L-ASST), catalyzing a sulfurtransferase reaction during homocysteine biosynthesis in methanogens, is potentially involved in genetic compensation of the MMP16 deletion. Even though both L-ASST and MMP16 are members of the COG1900 family, site-directed mutagenesis of conserved cysteine residues implicated in catalysis reveal that the underlying reaction mechanisms may be distinct.
Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea
Sulfate-coupled anaerobic oxidation of methane (AOM) is performed by multicellular consortia of anaerobic methanotrophic archaea (ANME) in obligate syntrophic partnership with sulfate-reducing bacteria (SRB). Diverse ANME and SRB clades co-associate but the physiological basis for their adaptation and diversification is not well understood. In this work, we used comparative metagenomics and phylogenetics to investigate the metabolic adaptation among the 4 main syntrophic SRB clades (HotSeep-1, Seep-SRB2, Seep-SRB1a, and Seep-SRB1g) and identified features associated with their syntrophic lifestyle that distinguish them from their non-syntrophic evolutionary neighbors in the phylum Desulfobacterota. We show that the protein complexes involved in direct interspecies electron transfer (DIET) from ANME to the SRB outer membrane are conserved between the syntrophic lineages. In contrast, the proteins involved in electron transfer within the SRB inner membrane differ between clades, indicative of convergent evolution in the adaptation to a syntrophic lifestyle. Our analysis suggests that in most cases, this adaptation likely occurred after the acquisition of the DIET complexes in an ancestral clade and involve horizontal gene transfers within pathways for electron transfer (CbcBA) and biofilm formation (Pel). We also provide evidence for unique adaptations within syntrophic SRB clades, which vary depending on the archaeal partner. Among the most widespread syntrophic SRB, Seep-SRB1a, subclades that specifically partner ANME-2a are missing the cobalamin synthesis pathway, suggestive of nutritional dependency on its partner, while closely related Seep-SRB1a partners of ANME-2c lack nutritional auxotrophies. Our work provides insight into the features associated with DIET-based syntrophy and the adaptation of SRB towards it.
A non-methanogenic archaeon within the order Methanocellales
Serpentinization, a geochemical process found on modern and ancient Earth, provides an ultra-reducing environment that can support microbial methanogenesis and acetogenesis. Several groups of archaea, such as the order Methanocellales , are characterized by their ability to produce methane. Here, we generate metagenomic sequences from serpentinized springs in The Cedars, California, and construct a circularized metagenome-assembled genome of a Methanocellales archaeon, termed Met12, that lacks essential methanogenesis genes. The genome includes genes for an acetyl-CoA pathway, but lacks genes encoding methanogenesis enzymes such as methyl-coenzyme M reductase, heterodisulfide reductases and hydrogenases. In situ transcriptomic analyses reveal high expression of a multi-heme c- type cytochrome, and heterologous expression of this protein in a model bacterium demonstrates that it is capable of accepting electrons. Our results suggest that Met12, within the order Methanocellales , is not a methanogen but a CO 2 -reducing, electron-fueled acetogen without electron bifurcation. Several groups of archaea, such as the order Methanocellales , are characterised by their ability to produce methane. Here, Suzuki et al. identify a Methanocellales archaeon that lacks essential methanogenesis genes and seems to be instead a CO 2 -reducing, electron-fueled acetogen.
Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi
The methyl-coenzyme M reductase (MCR) complex is a key enzyme in archaeal methane generation and has recently been proposed to also be involved in the oxidation of short-chain hydrocarbons including methane, butane, and potentially propane. The number of archaeal clades encoding the MCR continues to grow, suggesting that this complex was inherited from an ancient ancestor, or has undergone extensive horizontal gene transfer. Expanding the representation of MCR-encoding lineages through metagenomic approaches will help resolve the evolutionary history of this complex. Here, a near-complete Archaeoglobi metagenome-assembled genome (MAG; Ca . Polytropus marinifundus gen. nov. sp. nov.) was recovered from the deep subseafloor along the Juan de Fuca Ridge flank that encodes two divergent McrABG operons similar to those found in Ca . Bathyarchaeota and Ca . Syntrophoarchaeum MAGs. Ca . P. marinifundus is basal to members of the class Archaeoglobi, and encodes the genes for β-oxidation, potentially allowing an alkanotrophic metabolism similar to that proposed for Ca . Syntrophoarchaeum. Ca . P. marinifundus also encodes a respiratory electron transport chain that can potentially utilize nitrate, iron, and sulfur compounds as electron acceptors. Phylogenetic analysis suggests that the Ca . P. marinifundus MCR operons were horizontally transferred, changing our understanding of the evolution and distribution of this complex in the Archaea.
Comparative genomics on cultivated and uncultivated freshwater and marine “candidatus manganitrophaceae” species implies their worldwide reach in manganese chemolithoautotrophy
Manganese (Mn) is an abundant redox-active metal that cycles in many of Earth’s biomes. While diverse bacteria and archaea have been demonstrated to respire Mn(III/IV), only recently have bacteria been implicated in Mn(II) oxidation-dependent growth. Chemolithoautotrophic manganese oxidation has long been theorized but only recently demonstrated in a bacterial coculture. The majority member of the coculture, “ Candidatus Manganitrophus noduliformans,” is a distinct but not yet isolated lineage in the phylum Nitrospirota ( Nitrospirae ). Here, we established two additional MnCO 3 -oxidizing cultures using inocula from Santa Barbara (California) and Boetsap (South Africa). Both cultures were dominated by strains of a new species, designated “ Candidatus Manganitrophus morganii.” The next most abundant members differed in the available cultures, suggesting that while “ Ca. Manganitrophus” species have not been isolated in pure culture, they may not require a specific syntrophic relationship with another species. Phylogeny of cultivated “ Ca. Manganitrophus” and related metagenome-assembled genomes revealed a coherent taxonomic family, “ Candidatus Manganitrophaceae,” from both freshwater and marine environments and distributed globally. Comparative genomic analyses support this family being Mn(II)-oxidizing chemolithoautotrophs. Among the 895 shared genes were a subset of those hypothesized for Mn(II) oxidation (Cyc2 and PCC_1) and oxygen reduction (TO_1 and TO_2) that could facilitate Mn(II) lithotrophy. An unusual, plausibly reverse complex 1 containing 2 additional pumping subunits was also shared by the family, as were genes for the reverse tricarboxylic acid carbon fixation cycle, which could enable Mn(II) autotrophy. All members of the family lacked genes for nitrification found in Nitrospira species. The results suggest that “ Ca. Manganitrophaceae” share a core set of candidate genes for the newly discovered manganese-dependent chemolithoautotrophic lifestyle and likely have a broad, global distribution. IMPORTANCE Manganese (Mn) is an abundant redox-active metal that cycles in many of Earth’s biomes. While diverse bacteria and archaea have been demonstrated to respire Mn(III/IV), only recently have bacteria been implicated in Mn(II) oxidation-dependent growth. Here, two new Mn(II)-oxidizing enrichment cultures originating from two continents and hemispheres were examined. By comparing the community composition of the enrichments and performing phylogenomic analysis on the abundant Nitrospirota therein, new insights are gleaned on cell interactions, taxonomy, and machineries that may underlie Mn(II)-based lithotrophy and autotrophy.