Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
55 result(s) for "Chai, Li-juan"
Sort by:
Xueshuantong injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress
Salvianolate lyophilized injection (SLI) and Xueshuantong injection (lyophilized) (XST) are two herbal standardized preparations that have been widely used in China for the treatment of acute cerebral infarction. In this study, we investigated the neuroprotective effects of SLI combined with XST in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Wistar rats were subjected to 1.5 h of MCAO followed by reperfusion for 3 h, then were treated with SLI or XST alone, or with their combinations via tail vein injection daily for 3 d. Edaravone (EDI, 6 mg·kg-1 ·d-1 ) was used as a positive control drug, We showed that administration of a combination of 1X1S (XST 100 mg·kg-1 ·d-1 plus SLI 21 mg·kg-1 ·d-1 ) more effectively protected the ischemic brains than SLI or XST used alone. Administration of 1X1S not only significantly decreased neurological deficit scores and infarct volumes and increased regional cerebral blood flow, but also inhibited the activation of both microglia and astrocytes in the hippocampus. Furthermore, administration of 1X1S significantly decreased the levels of MDA and ROS with concomitant increases in the levels of antioxidant activity (SOD, CAT and GSH) in the brain tissues as compared with SLI and XST used alone. Moreover, administration of 1X1S remarkably upregulated the expression of Nrf-2, HO-1 and NQO-1, and downregulated the expression of Keap1 and facilitated the nuclear translocation of Nrf-2 in the brain tissues as compared with XST used alone. Our study demonstrates that a combination of 1X1S effectively protects MCAO/R injury via suppressing oxidative stress and the Nrf-2/Keap1 pathway.
Rapid detection of six Oceanobacillus species in Daqu starter using single‐cell Raman spectroscopy combined with machine learning
Many traditional fermented foods and beverages industries around the world request the addition of multi‐species starter cultures. However, the microbial community in starter cultures is subject to fluctuations due to their exposure to an open environment during fermentation. A rapid detection approach to identify the microbial composition of starter culture is essential to ensure the quality of the final products. Here, we applied single‐cell Raman spectroscopy (SCRS) combined with machine learning to monitor Oceanobacillus species in Daqu starter, which plays crucial roles in the process of Chinese baijiu. First, a total of six Oceanobacillus species (O. caeni, O. kimchii, O. iheyensis, O. sojae, O. oncorhynchi subsp. Oncorhynchi and O. profundus) were detected in 44 Daqu samples by amplicon sequencing and isolated by pure culture. Then, we created a reference database of these Oceanobacillus strains which correlated their taxonomic data and single‐cell Raman spectra (SCRS). Based on the SCRS dataset, five machine‐learning algorithms were used to classify Oceanobacillus strains, among which support vector machine (SVM) showed the highest rate of accuracy. For validation of SVM‐based model, we employed a synthetic microbial community composed of varying proportions of Oceanobacillus species and demonstrated a remarkable accuracy, with a mean error was less than 1% between the predicted result and the expected value. The relative abundance of six different Oceanobacillus species during Daqu fermentation was predicted within 60 min using this method, and the reliability of the method was proved by correlating the Raman spectrum with the amplicon sequencing profiles by partial least squares regression. Our study provides a rapid, non‐destructive and label‐free approach for rapid identification of Oceanobacillus species in Daqu starter culture, contributing to real‐time monitoring of fermentation process and ensuring high‐quality products. Our study provides a rapid, non‐destructive and label‐free approach for rapid identification of Oceanobacillus species in Daqu starter culture, contributing to real‐time monitoring of fermentation process and ensuring high‐quality products.
Lactobacillus jinshani sp. nov., isolated from solid-state vinegar culture of Zhenjiang aromatic vinegar
A novel Gram-stain-positive, non-motile, non-spore-forming, rod-shaped, facultatively anaerobic, designated strain HSLZ-75T, was isolated from the solid-state vinegar culture of Zhenjiang aromatic vinegar. Strain HSLZ-75T grew at 20–40 °C (optimum 35 °C), pH 3.0–5.0 (optimum pH 4.0) and 0–5% (w/v) NaCl (optimum 0%). Heterolactic fermentation characterised the metabolism of strain HSLZ-75T. d- and l-lactic acid were produced from glucose in a ratio of 91:9. The major cellular fatty acids ( > 10%) consisted of C16:0, C18:1ω9c, summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid and six unknown lipids. The cell wall was found to contain meso-diaminopimelic acid-type peptidoglycan. The 16S rRNA gene sequence of strain HSLZ-75T showed the highest similarity of 88.0% with Lactobacillus fructivorans DSM 20203T. Phylogenetic analysis indicated that strain HSLZ-75T belonged to family Lactobacillaceae and formed a distinct lineage with the type strain of Lactobacillus caviae. The complete genome of strain HSLZ-75T contained a circular chromosome of 1,616,430 bp with 1570 genes and 39.7 mol% G + C content. The average nucleotide identity values between strain HSLZ-75T and the reference type strains Lactobacillus fructivorans DSM 20203T and Lactobacillus rossiae DSM 15814T were 66.4% and 65.7%, respectively. On the basis of phenotypic, chemotaxonomic, phylogenetic and genotypic characteristics, strain HSLZ-75T should be classified as a novel species of the genus Lactobacillus in the family Lactobacillaceae of the order Lactobacillales, for which the name Lactobacillus jinshani sp. nov. is proposed. The type strain is HSLZ-75T ( = CICC 6269T = JCM 33270T).
Volatile Compound Abundance Correlations Provide a New Insight into Odor Balances in Sauce-Aroma Baijiu
Sauce-aroma Baijiu (SAB) is one of the most famous Baijius in China; SAB has more than 500 aroma compounds in it. However, the key aroma compound in SAB flavor remains unclear. Volatiles play an important role in SAB aroma and are highly correlated to SAB quality. In the present study, 63 volatile compounds were quantified among 66 SAB samples using gas chromatography with flame ionization detector (GC-FID). The authors analyzed odor contributions and volatile compound correlations in two quality groups of SAB samples. Moreover, an odor activity value (OAV) ratio-based random forest classifier was used to explain the volatile compound relationship differentiations between the two quality groups. Our results proved higher quality SABs had richer aromas and indicated a set of fruity-like ethyl valerate, green- and malt-like isobutyraldehyde and malt-like 3-methylbutyraldehyde and sweet-like furfural, had closer co-abundance correlations in higher quality SABs. These results indicated that the aroma and contributions of volatile compounds in SABs should be analyzed not only with compound odor activity values, but also the correlations between different aroma compounds.
Bond-Slip Behaviors Between BFRP Bar and Ecological High Ductility Concrete Using the Beam Test
To better understand the design parameters of bridge deck link slab made by basalt fiber reinforced polymer (BFRP) bar and ecological high ductility concrete (Eco-HDC), the bond behaviors of BFRP bar embedded in Eco-HDC using beam test based on RILEM standard were studied. The beam specimens had variable factors namely diameter of BFRP bar, embedment length and cover thickness. The results indicate that most beam specimens display a failure mode of BFRP bar pulled out with specimen splitting. Besides, with the increase of diameter and embedment length, the bond strength decreases. While as the cover thickness increases, the bond strength and first bond stress show an increasing trend. The free end slip increases as the embedment length or cover thickness increases. In addition, the strain at loaded end is larger than that at free end as the load increases. Moreover, the formulas of bond strength and peak slip are proposed based on the test data of specimens. At last, embedment length and cover thickness of BFRP bar in the bridge deck link slab are recommended.
Shuxuetong injection protects cerebral microvascular endothelial cells against oxygen-glucose deprivation reperfusion
Shuxuetong injection composed of leech (Hirudo nipponica Whitman) and earthworm (Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotective mechanism of Shuxuetong injection remains poorly understood. Here, cerebral microvascular endothelial cells (bEnd.3) were incubated in glucose-free Dulbecco's modified Eagle's medium containing 95% N2/5% CO2 for 6 hours, followed by high-glucose medium containing 95% O2 and 5% CO2 for 18 hours to establish an oxygen-glucose deprivation/reperfusion model. This in vitro cell model was administered Shuxuetong injection at 1/32, 1/64, and 1/128 concentrations (diluted 32-, 64-, and 128-times). Cell Counting Kit-8 assay was used to evaluate cell viability. A fluorescence method was used to measure lactate dehydrogenase, and a fluorescence microplate reader used to detect intracellular reactive oxygen species. A fluorescent probe was also used to measure mitochondrial superoxide production. A cell resistance meter was used to measure transepithelial resistance and examine integrity of monolayer cells. The fluorescein isothiocyanate-dextran test was performed to examine blood-brain barrier permeability. Real-time reverse transcription polymerase chain reaction was performed to analyze mRNA expression levels of tumor necrosis factor alpha, interleukin-1β, interleukin-6, and inducible nitric oxide synthase. Western blot assay was performed to analyze expression of caspase-3, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, occludin, vascular endothelial growth factor, cleaved caspase-3, B-cell lymphoma 2, phosphorylated extracellular signal-regulated protein kinase, extracellular signal-regulated protein kinase, nuclear factor-κB p65, I kappa B alpha, phosphorylated I kappa B alpha, I kappa B kinase, phosphorylated I kappa B kinase, claudin-5, and zonula occludens-1. Our results show that Shuxuetong injection increases bEnd.3 cell viability and B-cell lymphoma 2 expression, reduces cleaved caspase-3 expression, inhibits production of reactive oxygen species and mitochondrial superoxide, suppresses expression of tumor necrosis factor alpha, interleukin-1β, interleukin-6, inducible nitric oxide synthase mRNA, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, markedly increases transepithelial resistance, decreases blood-brain barrier permeability, upregulates claudin-5, occludin, and zonula occludens-1 expression, reduces nuclear factor-κB p65 and vascular endothelial growth factor expression, and reduces I kappa B alpha, extracellular signal-regulated protein kinase 1/2, and I kappa B kinase phosphorylation levels. Overall, these findings suggest that Shuxuetong injection has protective effects on brain microvascular endothelial cells after oxygen-glucose deprivation/reperfusion. Moreover, its protective effect is associated with reduction of mitochondrial superoxide production, inhibition of the inflammatory response, and inhibition of vascular endothelial growth factor, extracellular signal-regulated protein kinase 1/2, and the nuclear factor-κB p65 signaling pathway.
Comparative Genomics Unveils the Habitat Adaptation and Metabolic Profiles of Clostridium in an Artificial Ecosystem for Liquor Production
Pit mud is a typical artificial ecosystem for Chinese liquor production. Clostridium inhabiting pit mud plays essential roles in the flavor formation of strong-flavor baijiu. The relative abundance of Clostridium increased with pit mud quality, further influencing the quality of baijiu. Clostridium inhabiting pit mud (PM) is one of the important bacterial populations for synthesizing flavor compounds of Chinese strong-flavor baijiu. The long-term cereal fermentation with sorghum as the main raw material creates an environment rich in starch, ethanol, and organic acids (mainly lactic acid). However, the genetic factors underpinning Clostridium ’s adaptation to PM remain poorly understood. Here, we performed comparative genomic analysis between 30 pit mud-associated (PMA) and 100 non-pit mud-associated (NPMA) Clostridium strains. Comparison analysis of the enrichment of KEGG pathways between PMA and NPMA Clostridium strains showed two-component system, flagellar assembly, and bacterial chemotaxis pathways related to environmental adaptation were enriched in PMA strains. The number of genes encoding alcohol dehydrogenase and l -lactate dehydrogenase in PMA Clostridium strains was significantly higher than that in NPMA, which is helpful for them to adapt to the ethanol- and lactic acid-rich environment. The analysis of carbohydrate-active enzymes demonstrated that glycoside hydrolases (GHs) was the most abundant family in all Clostridium strains, and genes encoding GH4 and GH13, involved in starch and sucrose metabolism, were enriched in PMA Clostridium . Horizontal gene transfer analysis revealed that multiple genes encoding the enzymes involved in carbohydrate and amino acid metabolism were transferred from Bacillus to Clostridium in pit mud. Most of the PMA Clostridium strains had good potential for butyric acid synthesis from ethanol, lactic acid, and starch. Collectively, this study furthers our understanding of the habitat adaptation and metabolic potential of PMA Clostridium strains. IMPORTANCE Pit mud is a typical artificial ecosystem for Chinese liquor production. Clostridium inhabiting pit mud plays essential roles in the flavor formation of strong-flavor baijiu. The relative abundance of Clostridium increased with pit mud quality, further influencing the quality of baijiu. So far, the ecological adaptation of Clostridium to a pit mud-associated lifestyle is largely unknown. Here, comparative genomic analysis of pit mud-associated (PMA) and non-pit mud-associated (NPMA) Clostridium strains was performed. We found genes related to the metabolism of starch, ethanol, and lactic acid were enriched in PMA Clostridium strains, which facilitated their adaptation to the unique brewing environment. In addition, horizontal gene transfer contributed to the adaptation of Clostridium to pit mud. Our findings provide genetic insights on PMA Clostridium strains’ ecological adaptation and metabolic characteristics.
Microbial biogeography of pit mud from an artificial brewing ecosystem on a large time scale: all roads lead to Rome
The fermentation process of strong-flavor Baijiu occurs in an underground cellar surrounded by mud, where grains are decomposed and generate new flavor substances. Pit mud microbiome plays a pivotal role in the formation of Baijiu flavor, which is positively correlated with cellar age. Previous research on the pit mud microbiome was often conducted for a specific distillery, making it hard to draw a general conclusion to decipher the pit mud microecosystem in such a unique brewing environment. Hence, in this study, we attempt to unravel community formation mechanisms through research in pit mud microbial biogeography based on 12 independent bacterial studies comprising qualified data sets of 302 samples clearly marked with cellar age from five major producing provinces. We found cellar age explained more variations in the bacterial community than geographical region. The bacterial community displayed evident dominant species alternations on a large time scale. Lactobacillus was found to be the dominant species in young pit mud (<10 years), while Caproiciproducens dominated in aged pit mud. Null model analysis revealed that as pit mud aged, the influence of stochastic and deterministic processes in the bacterial community shifted, and the relative contribution of homogeneous selection increased. Positive correlations dominated the bacterial co-occurrence networks, and the network complexity decreased and stability increased with cellar age. These findings shed new light on the formation of pit mud microbiomes under the impact of long-term batch-to-batch continuous brewing, providing a basis for the evaluation and production of high-quality pit mud. Baijiu is a typical example of how humans employ microorganisms to convert grains into new flavors. Mud cellars are used as the fermentation vessel for strong-flavor Baijiu (SFB) to complete the decomposition process of grains. The typical flavor of SFB is mainly attributed to the metabolites of the pit mud microbiome. China has a large number of SFB-producing regions. Previous research revealed the temporal profiles of the pit mud microbiome in different geographical regions. However, each single independent study rarely yields a thorough understanding of the pit mud ecosystem. Will the pit mud microbial communities in different production regions exhibit similar succession patterns and structures under the impact of the brewing environment? Hence, we conducted research in pit mud microbial biogeography to uncover the impact of specific environment on the microbial community over a long time scale.
The Antiosteoporosis Effects of Zhuanggu Guanjie Pill In Vitro and In Vivo
We investigated the beneficial effects and underlying mechanisms of Zhuanggu Guanjie (ZGGJ) pill in osteoporosis in vitro and in vivo. Bone marrow macrophages from 4–6-week-old mice were cultured in the presence of macrophage colony-stimulating factor (15 ng/mL) and receptor activator of nuclear factor-κB ligand (30 ng/mL). Osteoclast differentiation was determined by quantification of tartrate-resistant acid phosphatase activity. Gelatin zymography was used to detect the activity of matrix metalloproteinases in osteoclasts. Ovariectomized rats were administered orally with estradiol valerate or ZGGJ for 8 weeks. Blood was collected to measure serum indices. Tibiae were harvested to carry out bone microcomputed tomography scanning, histomorphological analysis, and bone strength determination. ZGGJ inhibited tartrate-resistant acid phosphatase activity, matrix metalloproteinase 9 expression, and bone resorption in vitro. At doses of 0.55, 1.1, and 2.2 g/kg, ZGGJ exerted significant osteoprotective effects including inhibition of bone turnover markers and improved tibia bone strength in ovariectomized rats. Microcomputed tomographic analysis showed that ZGGJ improved the trabecular architecture with increased connectivity density and trabecular thickness and decreased trabecular spacing. These results revealed that ZGGJ prevents bone loss induced by ovariectomy in rats and that inhibition of bone resorption is involved in the bone-protective effects of ZGGJ.
Corrosion behavior of steel bar embedded in high-ductility cementitious composites under the coupled action of dry–wet cycles and chloride attack
Purpose High-ductility cementitious composites (HDCC) have an excellent crack controlled capacity and corrosion resistance capacity, which has a promising application in structure engineering under harsh environment. The purpose of this study is to explore the corrosion mechanism of steel bar in HDCC. Design/methodology/approach Intact and the pre-cracked HDCC specimens under the coupled action of different dry–wet cycles and chloride attack were designed, and intact normal concrete (NC) was also considered for comparison. Corrosion behavior of a steel bar embedded in HDCC was analyzed by an electrochemical method, a chloride permeability test and X-ray computed tomography. Findings Steel corrosion probability is related to the chloride permeability of the HDCC cover, and the chloride permeability resistance of HDCC is better than that of NC. Besides, crack is the key factor affecting the corrosion of steel bars, and the HDCC with narrower cracks have a lower corrosion rate. Slight pitting occurs at the crack tips. In addition, the self-healing products and corrosion products fill up the cracks in HDCC, preventing the external aggressive ions from entering and thereby decreasing the steel corrosion rate. Originality/value HDCC has a superior corrosion resistance than that of NC, effects of variable crack width on corrosion behavior of steel bar in HDCC under the coupled actions of different dry–wet cycles and chloride attack are investigated, which can provide the guide for the design application of HDCC material in structure engineering exposed to marine environment.