Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
38 result(s) for "Chalumeau, Anne"
Sort by:
Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression
Sickle cell disease and β-thalassemia affect the production of the adult β-hemoglobin chain. The clinical severity is lessened by mutations that cause fetal γ-globin expression in adult life (i.e., the hereditary persistence of fetal hemoglobin). Mutations clustering ~200 nucleotides upstream of the HBG transcriptional start sites either reduce binding of the LRF repressor or recruit the KLF1 activator. Here, we use base editing to generate a variety of mutations in the −200 region of the HBG promoters, including potent combinations of four to eight γ-globin-inducing mutations. Editing of patient hematopoietic stem/progenitor cells is safe, leads to fetal hemoglobin reactivation and rescues the pathological phenotype. Creation of a KLF1 activator binding site is the most potent strategy – even in long-term repopulating hematopoietic stem/progenitor cells. Compared with a Cas9-nuclease approach, base editing avoids the generation of insertions, deletions and large genomic rearrangements and results in higher γ-globin levels. Our results demonstrate that base editing of HBG promoters is a safe, universal strategy for treating β-hemoglobinopathies. Antoniou and colleagues used base editing to generate a variety of mutations inducing γ-globin and rescue the β-hemoglobinopathy phenotype. This strategy was safe and effective in long-term repopulating hematopoietic stem/progenitor cells.
Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells
Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing β-thalassemic phenotype. In an immunodeficient female mouse model, transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease. Sickle cell disease is a blood disorder that originates from a single point mutation in the HBB gene that codes for hemoglobin. Here, Moiani et al. developed an efficient TALEN-mediated HBB correction process that is compatible with gene therapy applications.
Severe inflammation and lineage skewing are associated with poor engraftment of engineered hematopoietic stem cells in patients with sickle cell disease
In sickle cell disease (SCD), the β6 Glu→Val substitution in the β-globin leads to red blood cell sickling. The transplantation of autologous, genetically modified hematopoietic stem and progenitor cells (HSPCs) is a promising treatment option for patients with SCD. We completed a Phase I/II open-label clinical trial (NCT03964792) for patients with SCD using a lentiviral vector (DREPAGLOBE) expressing a potent anti-sickling β-globin. The primary endpoint was to evaluate the short-term safety and secondary endpoints included the efficacy and the long-term safety. We report on the results after 18 to 36 months of follow-up. No drug-related adverse events or signs of clonal hematopoiesis were observed. Despite similar vector copy numbers in the drug product, gene-marking in peripheral blood mononuclear cells and correction of the clinical phenotype varied from one patient to another. Single-cell transcriptome analyses show that in the patients with poor engraftment, the most immature HSCs display an exacerbated inflammatory signature (via IL-1 or TNF-α and interferon signaling pathways). This signature is accompanied by a lineage bias in the HSCs. Our clinical data indicates that the DREPAGLOBE-based gene therapy (GT) is safe. However, its efficacy is variable and probably depends on the number of infused HSCs and intrinsic, engraftment-impairing inflammatory alterations in HSCs. Trial: NCT03964792 The DREPAGLOBE lentiviral-based gene therapy for sickle cell disease is safe. However, its efficacy depends on the number of infused hematopoietic stem cells (HSCs) and intrinsic, engraftment impairing inflammatory alterations in HSCs.
Long-term outcomes of lentiviral gene therapy for the β-hemoglobinopathies: the HGB-205 trial
Sickle cell disease (SCD) and transfusion-dependent β-thalassemia (TDT) are the most prevalent monogenic disorders worldwide. Trial HGB-205 ( NCT02151526 ) aimed at evaluating gene therapy by autologous CD34 + cells transduced ex vivo with lentiviral vector BB305 that encodes the anti-sickling β A-T87Q -globin expressed in the erythroid lineage. HGB-205 is a phase 1/2, open-label, single-arm, non-randomized interventional study of 2-year duration at a single center, followed by observation in long-term follow-up studies LTF-303 ( NCT02633943 ) and LTF-307 ( NCT04628585 ) for TDT and SCD, respectively. Inclusion and exclusion criteria were similar to those for allogeneic transplantation but restricted to patients lacking geno-identical, histocompatible donors. Four patients with TDT and three patients with SCD, ages 13–21 years, were treated after busulfan myeloablation 4.6–7.9 years ago, with a median follow-up of 4.5 years. Key primary endpoints included mortality, engraftment, replication-competent lentivirus and clonal dominance. No adverse events related to the drug product were observed. Clinical remission and remediation of biological hallmarks of the disease have been sustained in two of the three patients with SCD, and frequency of transfusions was reduced in the third. The patients with TDT are all transfusion free with improvement of dyserythropoiesis and iron overload. The final report of the phase 1/2 lentiviral gene therapy trial in severe β-hemoglobinopathies, HGB-205, shows a long-term safety profile and sustained reduction of transfusion requirements in patients with β-thalassemia and of sickle cell crises in patients with sickle cell disease.
Multiplex base editing of BCL11A regulatory elements to treat sickle cell disease
Sickle cell disease (SCD) is a genetic anemia caused by the production of an abnormal adult hemoglobin. The clinical severity is lessened by elevated fetal hemoglobin (HbF) production in adulthood. A promising therapy is the transplantation of autologous, hematopoietic stem/progenitor cells (HSPCs) treated with CRISPR/Cas9 to downregulate the HbF repressor BCL11A via generation of double strand breaks (DSBs) in the +58-kb erythroid-specific enhancer. Here, to further enhance HbF production without increasing the mutagenic load, we targeted both +58-kb and +55-kb BCL11A erythroid-specific enhancers using base editors. We systematically dissected DNA motifs recognized by the key transcriptional activators within these regions and identified the critical nucleotides required for activator binding. Multiplex base editing of these residues was efficient and safe and generated no or little DSBs and genomic rearrangements. We observed substantial HbF reactivation, exceeding the levels achieved using the CRISPR/Cas9 nuclease-based strategy, thus efficiently rescuing the sickling phenotype. Multiplex base editing was efficient in long-term repopulating HSPCs and resulted in potent HbF reactivation in vivo. In summary, these results show that multiplex base editing of BCL11A erythroid-specific enhancers is a safe and potent strategy for treating sickle cell disease.Competing Interest StatementP.A. and A. M. are the inventors of a patent describing base editing approaches for hemoglobinopathies (PCT/EP2022/083904: Methods for increasing fetal hemoglobin content by editing the +55-kb region of the erythroid-specific bcl11a enhancer). Panagiotis Antoniou is an employee of Novo Nordisk. The remaining authors declare no competing interests.
Safety and efficacy studies of CRISPR/Cas9 treatment of sickle cell disease in clinically relevant conditions highlights disease-specific responses
Reactivation of fetal hemoglobin (HbF) expression through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated disruption of regulatory elements involved in γ-globin gene repression is a promising gene therapy strategy for the treatment of sickle cell disease (SCD). However, preclinical studies aimed at optimizing the genome editing process and evaluating the safety of the editing strategy are necessary to translate this approach to the clinics. This is particularly relevant in the context of SCD, a disease characterized by inflammation, which can affect hematopoietic stem and progenitor cells (HSPCs), the target cell population in gene therapy approaches for hematopoietic disorders. Here, we describe a genome editing strategy leading to therapeutically relevant reactivation of HbF expression by targeting the binding sites (BSs) for the leukemia/lymphoma related factor (LRF) transcriptional repressor in the HBG1 and HBG2 γ-globin promoters. Electroporation of Cas9 ribonucleoprotein and single guide RNA (sgRNA) targeting the HBG promoters in healthy donor (HD) and patient-derived HSPCs resulted in a high frequency of LRF BS disruption and potent HbF synthesis in their erythroid progeny differentiated in vitro and ex vivo after transplantation into immunodeficient mice. LRF BS disruption did not impair SCD and HD HSPC engraftment and differentiation, but was more efficient in SCD than in HD cells. However, SCD HSPCs showed a reduced engraftment and a myeloid bias compared to HD cells. Importantly, in HSPCs, we detected off-target activity and the intra- and inter-chromosomal rearrangements between on- and off-target sites, which were more pronounced in SCD samples (likely because of the higher overall editing efficiency), but did not impact the target gene expression. Off-target activity was observed in vitro and in vivo, thus indicating that it does not impair engraftment and differentiation of SCD and HD HSPCs. Finally, transcriptomic analyses showed that the genome editing procedure results in the upregulation of genes involved in DNA damage and inflammatory responses in both HD and SCD samples, although gene dysregulation was more evident in SCD HSPCs. Overall, this study provides evidences of feasibility, efficacy and safety for a genome editing strategy based on HbF reactivation and highlights the need of performing safety studies, when possible, in clinically relevant conditions, i.e., in patient-derived HSPCs.
A prime editing strategy to rewrite the γ-globin promoters and reactivate fetal hemoglobin for sickle cell disease
Fetal hemoglobin (HbF) reactivation is a promising therapy for beta-hemoglobinopathies. We developed a prime editing strategy that introduces multiple mutations in the fetal gamma-globin promoters of patients' hematopoietic stem/progenitor cells (HSPCs), boosting HbF expression and offering alternative therapeutic perspectives.Competing Interest StatementThe authors have declared no competing interest.
Safety and efficacy study of CRISPR/Cas9 treatment of sickle cell disease in clinically relevant conditions highlights disease-specific response
Reactivation of fetal hemoglobin (HbF) expression through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated disruption of regulatory elements involved in γ-globin gene repression is a promising gene therapy strategy for the treatment of sickle cell disease (SCD). However, preclinical studies aimed at optimizing the genome editing process and evaluating the safety of the editing strategy are necessary to translate this approach to the clinics. This is particularly relevant in the context of SCD, a disease characterized by inflammation, which can affect hematopoietic stem and progenitor cells (HSPCs), the target cell population in gene therapy approaches for hematopoietic disorders. Here, we describe a genome editing strategy leading to therapeutically relevant reactivation of HbF expression by targeting the binding sites (BSs) for the leukemia/lymphoma related factor (LRF) transcriptional repressor in the HBG1 and HBG2 γ-globin promoters. Electroporation of Cas9 ribonucleoprotein and single guide RNA (sgRNA) targeting the HBG promoters in healthy donor (HD) and patient-derived HSPCs resulted in a high frequency of LRF BS disruption and potent HbF synthesis in their erythroid progeny differentiated in vitro and ex vivo after transplantation into immunodeficient mice. LRF BS disruption did not impair SCD and HD HSPC engraftment and differentiation, but was more efficient in SCD than in HD cells. However, SCD HSPCs showed a reduced engraftment and a myeloid bias compared to HD cells. Importantly, in primary HSPCs, we detected off-target activity and the intra- and inter-chromosomal rearrangements between on- and off-target sites, which were more pronounced in SCD samples (likely because of the higher overall editing efficiency), but did not impact the target gene expression. Off-target activity was observed in vitro and in vivo, thus indicating that it does not impair engraftment and differentiation of both SCD and HD HSPCs. Finally, transcriptomic analyses showed that the genome editing procedure results in the upregulation of genes involved in DNA damage and inflammatory responses in both HD and SCD samples, although gene dysregulation was more evident in SCD HSPCs. Overall, this study provides evidences of feasibility, efficacy and safety for a genome editing strategy based on HbF reactivation and highlights the need of performing safety studies, when possible, in clinically relevant conditions, i.e., in patient-derived HSPCs.Competing Interest StatementAM is named as inventor on a patent describing genome-editing approaches for hemoglobinopathies (WO/2020/053224/PCT/EP2019/074131: Methods for increasing fetal hemoglobin content in eukaryotic cells and uses thereof for the treatment of hemoglobinopathies). All other authors declare no competing interests.
Novel lentiviral vectors for gene therapy of sickle cell disease combining gene addition and gene silencing strategies
Sickle cell disease (SCD) is due to a mutation in the β-globin (HBB) gene causing the production of the toxic sickle hemoglobin (HbS, α2βS2). Transplantation of autologous hematopoietic stem/progenitor cells (HSPCs) transduced with lentiviral vectors (LVs) expressing an anti-sickling β-globin (βAS) is a promising treatment; however, it is only partially effective and patients still present elevated HbS levels. Here, we developed a bifunctional LV expressing βAS3-globin and an artificial microRNA (amiR) specifically downregulating βS-globin expression with the aim of reducing HbS levels and favoring βAS3 incorporation into Hb tetramers. Efficient transduction of SCD HSPC by the bifunctional LV led to a substantial decrease of βS-globin transcripts in HSPC-derived erythroid cells, a significant reduction of HbS+ red cells and effective correction of the sickling phenotype, outperforming βAS gene addition and BCL11A gene silencing strategies. The bifunctional LV showed a standard integration profile and neither the HSPC viability, engraftment and multi-lineage differentiation nor the erythroid transcriptome and miRNAome were affected by the treatment, confirming the safety of this therapeutic strategy. In conclusion, the combination of gene addition and gene silencing strategies can improve the efficacy of current LV-based therapeutic approaches without increasing the mutagenic vector load, thus representing a novel treatment for SCD.Competing Interest StatementThe authors have declared no competing interest.
Treat-to-target in systemic lupus erythematosus: recommendations from an international task force
The principle of treating-to-target has been successfully applied to many diseases outside rheumatology and more recently to rheumatoid arthritis. Identifying appropriate therapeutic targets and pursuing these systematically has led to improved care for patients with these diseases and useful guidance for healthcare providers and administrators. Thus, an initiative to evaluate possible therapeutic targets and develop treat-to-target guidance was believed to be highly appropriate in the management of systemic lupus erythematosus (SLE) patients as well. Specialists in rheumatology, nephrology, dermatology, internal medicine and clinical immunology, and a patient representative, contributed to this initiative. The majority convened on three occasions in 2012–2013. Twelve topics of critical importance were identified and a systematic literature review was performed. The results were condensed and reformulated as recommendations, discussed, modified and voted upon. The finalised bullet points were analysed for degree of agreement among the task force. The Oxford Centre level of evidence (LoE, corresponding to the research questions) and grade of recommendation (GoR) were determined for each recommendation. The 12 systematic literature searches and their summaries led to 11 recommendations. Prominent features of these recommendations are targeting remission, preventing damage and improving quality of life. LoE and GoR of the recommendations were variable but agreement was >0.9 in each case. An extensive research agenda was identified, and four overarching principles were also agreed upon. Treat-to-target-in-SLE (T2T/SLE) recommendations were developed by a large task force of multispecialty experts and a patient representative. It is anticipated that ‘treating-to-target’ can and will be applicable to the care of patients with SLE.