Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Charpagne, Aline"
Sort by:
Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities
by
Francis-Emmanuel, Patrice
,
Ming Sim, Chu
,
Marquis, Julien
in
38/91
,
631/443/319/333/1465
,
631/443/7
2019
The causes of impaired skeletal muscle mass and strength during aging are well-studied in healthy populations. Less is known on pathological age-related muscle wasting and weakness termed sarcopenia, which directly impacts physical autonomy and survival. Here, we compare genome-wide transcriptional changes of sarcopenia versus age-matched controls in muscle biopsies from 119 older men from Singapore, Hertfordshire UK and Jamaica. Individuals with sarcopenia reproducibly demonstrate a prominent transcriptional signature of mitochondrial bioenergetic dysfunction in skeletal muscle, with low PGC-1α/ERRα signalling, and downregulation of oxidative phosphorylation and mitochondrial proteostasis genes. These changes translate functionally into fewer mitochondria, reduced mitochondrial respiratory complex expression and activity, and low NAD
+
levels through perturbed NAD
+
biosynthesis and salvage in sarcopenic muscle. We provide an integrated molecular profile of human sarcopenia across ethnicities, demonstrating a fundamental role of altered mitochondrial metabolism in the pathological loss of skeletal muscle mass and function in older people.
Sarcopenia is the loss of muscle mass and strength associated with physical disability during ageing. Here, the authors analyse muscle biopsies from 119 patients with sarcopenia and age-matched controls of different ethnic groups and find transcriptional signatures indicating mitochondrial dysfunction, associated with reduced mitochondria numbers and lower NAD
+
levels in older individuals with sarcopenia.
Journal Article
Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics
by
Descombes, Patrick
,
Alliet, Philippe
,
Porta, Nadine
in
2′FL
,
Acids
,
Anti-Bacterial Agents - administration & dosage
2020
Human milk is the sole and recommended nutrition for the newborn infant and contains one of the largest constituents of diverse oligosaccharides, dubbed human milk oligosaccharides (HMOs). Preclinical and clinical association studies indicate that HMOs have multiple physiological functions largely mediated through the establishment of the gut microbiome. Until recently, HMOs were not available to investigate their role in randomized controlled intervention trials. To our knowledge, this is the first report on the effects of 2 HMOs on establishing microbiota in newborn infants. We provide a detailed description of the microbiota changes observed upon feeding a formula with 2 HMOs in comparison to breastfed reference infants' microbiota. Then, we associate the microbiota to long-term health as assessed by prescribed antibiotic use. Human milk oligosaccharides (HMOs) may provide health benefits to infants partly by shaping the development of the early-life intestinal microbiota. In a randomized double-blinded controlled multicentric clinical trial, healthy term infants received either infant formula (control) or the same formula with two HMOs (2′-fucosyllactose and lacto-N- neo tetraose; test) from enrollment (0 to 14 days) to 6 months. Then, all infants received the same follow-up formula without HMOs until 12 months of age. Breastfed infants (BF) served as a reference group. Stool microbiota at 3 and 12 months, analyzed by 16S rRNA gene sequencing, clustered into seven fecal community types (FCTs) with marked differences in total microbial abundances. Three of the four 12-month FCTs were likely precursors of the adult enterotypes. At 3 months, microbiota composition in the test group ( n = 58) appeared closer to that of BF ( n = 35) than control ( n = 63) by microbiota alpha (within group) and beta (between groups) diversity analyses and distribution of FCTs. While bifidobacteriaceae dominated two FCTs, its abundance was significantly higher in one (FCT BiH for Bifidobacteriaceae at high abundance) than in the other (FCT Bi for Bifidobacteriaceae ). HMO supplementation increased the number of infants with FCT BiH (predominant in BF) at the expense of FCT Bi (predominant in control). We explored the association of the FCTs with reported morbidities and medication use up to 12 months. Formula-fed infants with FCT BiH at 3 months were significantly less likely to require antibiotics during the first year than those with FCT Bi. Previously reported lower rates of infection-related medication use with HMOs may therefore be linked to gut microbiota community types. (This study has been registered at ClinicalTrials.gov under registration number NCT01715246.) IMPORTANCE Human milk is the sole and recommended nutrition for the newborn infant and contains one of the largest constituents of diverse oligosaccharides, dubbed human milk oligosaccharides (HMOs). Preclinical and clinical association studies indicate that HMOs have multiple physiological functions largely mediated through the establishment of the gut microbiome. Until recently, HMOs were not available to investigate their role in randomized controlled intervention trials. To our knowledge, this is the first report on the effects of 2 HMOs on establishing microbiota in newborn infants. We provide a detailed description of the microbiota changes observed upon feeding a formula with 2 HMOs in comparison to breastfed reference infants' microbiota. Then, we associate the microbiota to long-term health as assessed by prescribed antibiotic use.
Journal Article
Contribution of genetic ancestry and polygenic risk score in meeting vitamin B12 needs in healthy Brazilian children and adolescents
2021
Polymorphisms in genes related to the metabolism of vitamin B12 haven’t been examined in a Brazilian population. To (a) determine the correlation between the local genetic ancestry components and vitamin B12 levels using ninety B12-related genes; (b) determine associations between these genes and their SNPs with vitamin B12 levels; (c) determine a polygenic risk score (PRS) using significant variants. This cross-sectional study included 168 children and adolescents, aged 9–13 years old. Total cobalamin was measured in plasma. Genotyping arrays and whole exome data were combined to yield ~ 7000 SNPs in 90 genes related to vitamin B12. The Efficient Local Ancestry Inference was used to estimate local ancestry for African (AFR), Native American, and European (EUR). The association between the genotypes and vitamin B12 levels were determined with generalized estimating equation. Vitamin B12 levels were driven by positive (EUR) and negative (AFR, AMR) correlations with genetic ancestry. A set of 36 variants were used to create a PRS that explained 42% of vitamin level variation. Vitamin B12 levels are influenced by genetic ancestry and a PRS explained almost 50% of the variation in plasma cobalamin in Brazilian children and adolescents.
Journal Article
Global transcriptome profiling reveals differential regulatory, metabolic and hormonal networks during somatic embryogenesis in Coffea arabica
by
Crouzillat, Dominique
,
Descombes, Patrick
,
Etienne, Hervé
in
Analysis
,
Animal Genetics and Genomics
,
Auxins
2023
Background
Somatic embryogenesis (SE) is one of the most promising processes for large-scale dissemination of elite varieties. However, for many plant species, optimizing SE protocols still relies on a trial and error approach. We report the first global scale transcriptome profiling performed at all developmental stages of SE in coffee to unravel the mechanisms that regulate cell fate and totipotency.
Results
RNA-seq of 48 samples (12 developmental stages × 4 biological replicates) generated 90 million high quality reads per sample, approximately 74% of which were uniquely mapped to the Arabica genome. First, the statistical analysis of transcript data clearly grouped SE developmental stages into seven important phases (Leaf, Dedifferentiation, Primary callus, Embryogenic callus, Embryogenic cell clusters, Redifferentiation and Embryo) enabling the identification of six key developmental phase switches, which are strategic for the overall biological efficiency of embryo regeneration. Differential gene expression and functional analysis showed that genes encoding transcription factors, stress-related genes, metabolism-related genes and hormone signaling-related genes were significantly enriched. Second, the standard environmental drivers used to control SE, i.e. light, growth regulators and cell density, were clearly perceived at the molecular level at different developmental stages. Third, expression profiles of auxin-related genes, transcription factor-related genes and secondary metabolism-related genes were analyzed during SE. Gene co-expression networks were also inferred. Auxin-related genes were upregulated during dedifferentiation and redifferentiation while transcription factor-related genes were switched on from the embryogenic callus and onward. Secondary metabolism-related genes were switched off during dedifferentiation and switched back on at the onset of redifferentiation. Secondary metabolites and endogenous IAA content were tightly linked with their respective gene expression. Lastly, comparing Arabica embryogenic and non-embryogenic cell transcriptomes enabled the identification of biological processes involved in the acquisition of embryogenic capacity.
Conclusions
The present analysis showed that transcript fingerprints are discriminating signatures of cell fate and are under the direct influence of environmental drivers. A total of 23 molecular candidates were successfully identified overall the 12 developmental stages and can be tested in many plant species to optimize SE protocols in a rational way.
Journal Article
Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle
by
Riezman, Howard
,
Betts, James A
,
Lefai, Etienne
in
Biopsy
,
Cell culture
,
circadian oscillators
2018
Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of similar to 8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans.
Journal Article
Temperature Impacts the Response of Coffea canephora to Decreasing Soil Water Availability
by
Decombes, Patrick
,
Gallagher, Thomas
,
Osborne, Bruce
in
Agricultural commodities
,
Biomedical and Life Sciences
,
Carbon dioxide
2020
Climate change is expected to result in more frequent periods of both low rainfall and above normal temperatures for many coffee growing regions. To understand how coffee reacts to such change, we studied the physiological and gene expression responses of the clonal variety
C. canephora
FRT07 exposed to water deficits under two different temperature regimes. Variations in the time-dependent impact of water deficits on leaf stomatal conductance and carbon assimilation were significantly different under the 27 °C and 27 °C/42 °C conditions examined. The physiological responses 24 h after re-watering were also different for both conditions. Expression analysis of genes known to respond to water deficits indicated that drought-related signaling occurred at both temperatures. Deeper insights into the response of coffee to water deficits was obtained by RNASeq based whole transcriptome profiling of leaves from early, late, and recovery stages of the 27 °C experiment. This yielded expression data for 13,642 genes and related differential expression analysis uncovered 362 and 474 genes with increased and decreased expression, respectively, under mild water deficits, and 1627 genes and 2197 genes, respectively, under more severe water deficits. The data presented, from a single clonal coffee variety, serves as an important reference point for future comparative physiological/transcriptomic studies with clonal coffee varieties with different sensitivities to water deficits and high temperatures. Such comparative analyses will help predict how different coffee varieties respond to changing climatic conditions, and may facilitate the identification of alleles associated with high and low tolerance to water deficits, enabling faster breeding of more climate-smart coffee trees.
Journal Article
The Influence of FUT2 and FUT3 Polymorphisms and Nasopharyngeal Microbiome on Respiratory Infections in Breastfed Bangladeshi Infants from the Microbiota and Health Study
by
Sakwinska, Olga
,
Sultana, Shamima
,
Shevlyakova, Maya
in
Babies
,
Bacteria - classification
,
Bacteria - growth & development
2021
The observed risk reduction of acute respiratory infections (ARIs) among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. Respiratory pathogens were only weak modulators of risk, and the nasopharyngeal microbiome did not influence ARI risk, suggesting that the associated protective effects of human milk oligosaccharides (HMOs) are not conveyed via changes in the nasopharyngeal microbiome. Acute respiratory infections (ARIs) are one of the most common causes of morbidity and mortality in young children. The aim of our study was to examine whether variation in maternal FUT2 (α1,2-fucosyltransferase 2) and FUT3 (α1,3/4-fucosyltransferase 3) genes, which shape fucosylated human milk oligosaccharides (HMOs) in breast milk, are associated with the occurrence of ARIs in breastfed infants as well as the influence of the nasopharyngeal microbiome on ARI risk. Occurrences of ARIs were prospectively recorded in a cohort of 240 breastfed Bangladeshi infants from birth to 2 years. Secretor and Lewis status was established by sequencing of FUT2/3 genes. The nasopharyngeal microbiome was characterized by shotgun metagenomics, complemented by specific detection of respiratory pathogens; 88.6% of mothers and 91% of infants were identified as secretors. Maternal secretor status was associated with reduced ARI incidence among these infants in the period from birth to 6 months (incidence rate ratio [IRR], 0.66; 95% confidence interval [CI], 0.47 to 0.94; P = 0.020), but not at later time periods. The nasopharyngeal microbiome, despite precise characterization to the species level, was not predictive of subsequent ARIs. The observed risk reduction of ARIs among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. However, we found no evidence that modulation of the nasopharyngeal microbiome influenced ARI risk. IMPORTANCE The observed risk reduction of acute respiratory infections (ARIs) among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. Respiratory pathogens were only weak modulators of risk, and the nasopharyngeal microbiome did not influence ARI risk, suggesting that the associated protective effects of human milk oligosaccharides (HMOs) are not conveyed via changes in the nasopharyngeal microbiome. Our observations add to the evidence for a role of fucosylated HMOs in protection against respiratory infections in exclusively or predominantly breastfed infants in low-resource settings. There is no indication that the nasopharyngeal microbiome substantially modulates the risk of subsequent mild ARIs. Larger studies are needed to provide mechanistic insights on links between secretor status, HMOs, and risk of respiratory infections.
Journal Article
Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms
by
David, Fabrice P. A.
,
Phillips, Nicholas E.
,
Weger, Benjamin D.
in
Animals
,
ARNTL Transcription Factors - deficiency
,
ARNTL Transcription Factors - genetics
2021
The circadian clock and feeding rhythms are both important regulators of rhythmic gene expression in the liver. To further dissect the respective contributions of feeding and the clock, we analyzed differential rhythmicity of liver tissue samples across several conditions. We developed a statistical method tailored to compare rhythmic liver messenger RNA (mRNA) expression in mouse knockout models of multiple clock genes, as well as PARbZip output transcription factors (Hlf/Dbp/Tef). Mice were exposed to ad libitum or night-restricted feeding under regular light–dark cycles. During ad libitum feeding, genetic ablation of the core clock attenuated rhythmic-feeding patterns, which could be restored by the night-restricted feeding regimen. High-amplitude mRNA expression rhythms in wild-type livers were driven by the circadian clock, but rhythmic feeding also contributed to rhythmic gene expression, albeit with significantly lower amplitudes. We observed that Bmal1 and Cry1/2 knockouts differed in their residual rhythmic gene expression. Differences in mean expression levels between wild types and knockouts correlated with rhythmic gene expression in wild type. Surprisingly, in PARbZip knockout mice, the mean expression levels of PARbZip targets were more strongly impacted than their rhythms, potentially due to the rhythmic activity of the D-box–repressor NFIL3. Genes that lost rhythmicity in PARbZip knockouts were identified to be indirect targets. Our findings provide insights into the diurnal transcriptome in mouse liver as we identified the differential contributions of several core clock regulators. In addition, we gained more insights on the specific effects of the feeding–fasting cycle.
Journal Article
The genome and population genomics of allopolyploid Coffea arabica reveal the diversification history of modern coffee cultivars
by
Domingues, Douglas
,
Zheng, Chunfang
,
Musoli, Pascal
in
631/114/2785
,
631/208/212
,
631/208/711
2024
Coffea arabica
, an allotetraploid hybrid of
Coffea eugenioides
and
Coffea canephora
, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid
C. arabica
accession and modern representatives of its diploid progenitors,
C. eugenioides
and
C. canephora
. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000–610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with
C. canephora
, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of
C. arabica
.
Chromosome-level genome assemblies of allotetraploid
Coffea arabica
and representatives of its diploid progenitors,
Coffea
eugenioides
and
Coffea
canephora
, provide insights into Arabica’s diversification history.
Journal Article
Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease
by
Masoodi, Mojgan
,
Morin-Rivron, Delphine
,
Weger, Benjamin D.
in
Animals
,
ARNTL Transcription Factors - genetics
,
ARNTL Transcription Factors - physiology
2022
Obesity and liver diseases are associated with the disruption of the circadian clock that orchestrates mammalian physiology to optimize nutrient metabolism and storage. Here, we show that the activity of the circadian clock regulator Brain and Muscle Aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1) is perturbed during liver fibrosis in humans. To understand the impact of BMAL1 perturbation in obesity and liver diseases, we assessed the impact of a high fat diet or leptin deficiency on Bmal1 knockout mice.While Bmal1 knockout mice were prone to obesity, they were protected against insulin resistance, hepatic steatosis, inflammation, and fibrosis. In addition, to direct the transcriptional regulation of metabolic programs by BMAL1, we show that the disruption of the growth hormone and sex hormone pathways plays a critical role in this protection. Similar endocrine perturbations correlate with the development of liver fibrosis in humans but were absent in hepatocyte-specific Bmal1 knockout mice. This suggests that systemic endocrine perturbation associated with the global disruption of BMAL1 activity is critical for the pathogenesis of metabolic and liver diseases.
Journal Article