Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
36 result(s) for "Chartier, Marion"
Sort by:
The ancestral flower of angiosperms and its early diversification
Recent advances in molecular phylogenetics and a series of important palaeobotanical discoveries have revolutionized our understanding of angiosperm diversification. Yet, the origin and early evolution of their most characteristic feature, the flower, remains poorly understood. In particular, the structure of the ancestral flower of all living angiosperms is still uncertain. Here we report model-based reconstructions for ancestral flowers at the deepest nodes in the phylogeny of angiosperms, using the largest data set of floral traits ever assembled. We reconstruct the ancestral angiosperm flower as bisexual and radially symmetric, with more than two whorls of three separate perianth organs each (undifferentiated tepals), more than two whorls of three separate stamens each, and more than five spirally arranged separate carpels. Although uncertainty remains for some of the characters, our reconstruction allows us to propose a new plausible scenario for the early diversification of flowers, leading to new testable hypotheses for future research on angiosperms. The fossil record of flowers is limited, necessitating other approaches to understanding floral evolution. Here, Sauquet and colleagues reconstruct the characteristics and diversification of ancient angiosperm flowers by combining models of flower evolution with an extensive database of extant floral traits.
Beyond buzz-pollination – departures from an adaptive plateau lead to new pollination syndromes
• Pollination syndromes describe recurring adaptation to selection imposed by distinct pollinators. We tested for pollination syndromes in Merianieae (Melastomataceae), which contain bee- (buzz-), hummingbird-, flowerpiercer-, passerine-, bat- and rodent-pollinated species. Further, we explored trait changes correlated with the repeated shifts away from buzz-pollination, which represents an ‘adaptive plateau’ in Melastomataceae. • We used random forest analyses to identify key traits associated with the different pollinators of 19 Merianieae species and estimated the pollination syndromes of 42 more species. We employed morphospace analyses to compare the morphological diversity (disparity) among syndromes. • We identified three pollination syndromes (‘buzz-bee’, ‘mixed-vertebrate’ and ‘passerine’), characterized by different pollen expulsion mechanisms and reward types, but not by traditional syndrome characters. Further, we found that ‘efficiency’ rather than ‘attraction’ traits were important for syndrome circumscription. Contrary to syndrome theory, our study supports the pooling of different pollinators (hummingbirds, bats, rodents and flowerpiercers) into the ‘mixed-vertebrate’ syndrome, and we found that disparity was highest in the ‘buzz-bee’ syndrome. • We conclude that the highly adaptive buzz-pollination system may have prevented shifts towards classical pollination syndromes, but provided the starting point for the evolution of a novel set of distinct syndromes, all having retained multifunctional stamens that provide pollen expulsion, reward and attraction.
Global patterns and a latitudinal gradient of flower disparity
• Morphological diversity (disparity) is an essential but often neglected aspect of biodiversity. Hence, it seems timely and promising to re-emphasize morphology in modern evolutionary studies. Disparity is a good proxy for the diversity of functions and interactions with the environment of a group of taxa. In addition, geographical and ecological patterns of disparity are crucial to understand organismal evolution and to guide biodiversity conservation efforts. • Here,we analyse floral disparity across latitudinal intervals, growth forms, climate types, types of habitats, and regions for a large and representative sample of the angiosperm order Ericales. • We find a latitudinal gradient of floral disparity and a decoupling of disparity from species richness. Other factors investigated are intercorrelated, and we find the highest disparity for tropical trees growing in African and South American forests. • Explanations for the latitudinal gradient of floral disparity may involve the release of abiotic constraints and the increase of biotic interactions towards tropical latitudes, allowing tropical lineages to explore a broader area of the floral morphospace. Our study confirms the relevance of biodiversity parameters other than species richness and is consistent with the importance of species interactions in the tropics, in particular with respect to angiosperm flowers and their pollinators.
Modularity and evolution of flower shape
• Flowers have been hypothesized to contain either modules of attraction and reproduction, functional modules (pollination-effecting parts) or developmental modules (organ-specific). Do pollination specialization and syndromes influence floral modularity? • In order to test these hypotheses and answer this question, we focused on the genus Erica: we gathered 3D data from flowers of 19 species with diverse syndromes via computed tomography, and for the first time tested the above-mentioned hypotheses via 3D geometric morphometrics. To provide an evolutionary framework for our results, we tested the evolutionary mode of floral shape, size and integration under the syndromes regime, and – for the first time – reconstructed the high-dimensional floral shape of their most recent common ancestor. • We demonstrate that the modularity of the 3D shape of generalist flowers depends on development and that of specialists is linked to function: modules of pollen deposition and receipt in bird syndrome, and access-restriction to the floral reward in long-proboscid fly syndrome. Only size and shape principal component 1 showed multiple-optima selection, suggesting that they were co-opted during evolution to adapt flowers to novel pollinators. Whole floral shape followed an Ornstein–Uhlenbeck (selection-driven) evolutionary model, and differentiated relatively late. • Flower shape modularity thus crucially depends on pollinator specialization and syndrome.
Floral uniformity through evolutionary time in a species-rich tree lineage
• Changes in floral morphology are expected across evolutionary time and are often promoted as important drivers in angiosperm diversification. Such a statement, however, is in contrast to empirical observations of species-rich lineages that show apparent conservative floral morphologies even under strong selective pressure to change from their environments. • Here, we provide quantitative evidence for prolific speciation despite uniform floral morphology in a tropical species-rich tree lineage. We analyse floral disparity in the environmental and phylogenetic context of Myrcia (Myrtaceae), one of the most diverse and abundant tree genera in Neotropical biomes. • Variation in floral morphology among Myrcia clades is exceptionally low, even among distantly related species. Discrete floral specialisations do occur, but these are few, present low phylogenetic signal, have no strong correlation with abiotic factors, and do not affect overall macroevolutionary dynamics in the lineage. • Results show that floral form and function may be conserved over large evolutionary time scales even in environments full of opportunities for ecological interactions and niche specialisation. Species accumulation in diverse lineages with uniform flowers apparently does not result from shifts in pollination strategies, but from speciation mechanisms that involve other, nonfloral plant traits.
How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales
The staggering diversity of angiosperms and their flowers has fascinated scientists for centuries. However, the quantitative distribution of floral morphological diversity (disparity) among lineages and the relative contribution of functional modules (perianth, androecium and gynoecium) to total floral disparity have rarely been addressed. Focusing on a major angiosperm order (Ericales), we compiled a dataset of 37 floral traits scored for 381 extant species and nine fossils. We conducted morphospace analyses to explore phylogenetic, temporal and functional patterns of disparity. We found that the floral morphospace is organized as a continuous cloud in which most clades occupy distinct regions in a mosaic pattern, that disparity increases with clade size rather than age, and that fossils fall in a narrow portion of the space. Surprisingly, our study also revealed that among functional modules, it is the androecium that contributes most to total floral disparity in Ericales. We discuss our findings in the light of clade history, selective regimes as well as developmental and functional constraints acting on the evolution of the flower and thereby demonstrate that quantitative analyses such as the ones used here are a powerful tool to gain novel insights into the evolution and diversity of flowers.
The evolution of afro-montane Delphinium (Ranunculaceae)
The genus Delphinium (Ranunculaceae) consists of ca. 300 species and has a mainly holarctic distribution. Few species have been described from high-altitude areas in West and East Tropical Africa, where the environmental conditions are mostly temperate-like. We aim to clarify the taxonomy of these afro-montane Delphinium species and to understand their evolutionary history in terms of their floral morphology and their phylogenetic and biogeographic relationships. Based on herbarium specimens, we analyze flower shape variation, map the geographic distribution of the morphologically defined taxa and reconstruct the molecular phylogeny of the group. Our quantitative analyses of flower shapes indicate that three species can be defined based on floral morphological traits, hence confirming the latest taxonomic treatment of the group where D. dasycaulon, D. leroyi and D. macrocentrum were described. The examination of herbarium specimens indicates that these three species are almost parapatric. However, their respective monophyly is not supported by molecular data. Considering their relatively young age, the non-monophyly of each of the three morphospecies could be due to incomplete lineage sorting and/or hybridization events. Alternatively, the transition to the D. leroyi floral morph could be the result of evolutionary convergence in the two main groups of afro-montane Delphinium driven by similar pollinators in different sky islands of the East African Rift System. We hypothesize that the main branches of the East African Rift System, as physical barriers to dispersal, may have prevented genetic exchange among geographic clusters.
How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales
The staggering diversity of angiosperme and their flowers has fascinated scientists for centuries. However, the quantitative distribution of floral morphological diversity (disparity) among lineages and the relative contribution of functional modules (perianth, androecium and gynoecium) to total floral disparity have rarely been addressed. Focusing on a major angiosperm order (Ericales), we compiled a dataset of 37 floral traits scored for 381 extant species and nine fossils. We conducted morphospace analyses to explore phylogenetic, temporal and functional patterns of disparity. We found that the floral morphospace is organized as a continuous cloud in which most clades occupy distinct regions in a mosaic pattern, that disparity increases with clade size rather than age, and that fossils fall in a narrow portion of the space. Surprisingly, our study also revealed that among functional modules, it is the androecium that contributes most to total floral disparity in Ericales. We discuss our findings in the light of clade history, selective regimes as well as developmental and functional constraints acting on the evolution of the flower and thereby demonstrate that quantitative analyses such as the ones used here are a powerful tool to gain novel insights into the evolution and diversity of flowers.
A REVIEW ON THE POLLINATION OF AROIDS WITH BISEXUAL FLOWERS
This paper presents an exhaustive review of the current knowledge on pollination of Araceae genera with bisexual flowers. All available studies on floral morphology, flowering sequence, floral scent, floral thermogenesis, floral visitors, and pollinators were carefully examined, with emphasis on the species-rich genera Anthurium Schott, Monstera Adans., and Spathiphyllum Schott. Genera with bisexual flowers are among the early-diverging lineages in Araceae, but present adaptations in their floral ecology to a great variety of pollination vectors, such as bees, beetles, flies, and, unusually, wind. These clades have developed highly derived pollination systems, involving the use of floral scent as a reward. We conclude that floral scent chemistry plays a key role in the pollination biology of the plants and that, in some genera, reproductive isolation through variation in the emitted floral volatile compounds may have been the decisive factor in the speciation processes of sympatric species.