Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Chauzat, Marie-Pierre"
Sort by:
Demographics of the European Apicultural Industry
Over the last few years, many European and North American countries have reported a high rate of disorders (mortality, dwindling and disappearance) affecting honeybee colonies (Apis mellifera). Although beekeeping has become an increasingly professional activity in recent years, the beekeeping industry remains poorly documented in Europe. The European Union Reference Laboratory for Honeybee Health sent a detailed questionnaire to each Member State, in addition to Kosovo and Norway, to determine the demographics and state of their beekeeping industries. Based on data supplied by the National Reference Laboratory for honeybee diseases in each European country, a European database was created to describe the beekeeping industry including the number and types of beekeepers, operation size, industry production, and health (notifiable diseases, mortalities). The total number of beekeepers in Europe was estimated at 620,000. European honey production was evaluated at around 220,000 tons in 2010. The price of honey varied from 1.5 to 40 €/kg depending on the country and on the distribution network. The estimated colony winter mortality varied from 7 to 28% depending on the country and the origin of the data (institutional survey or beekeeping associations). This survey documents the high heterogeneity of the apicultural industry within the European Union. The high proportion of non-professional beekeepers and the small mean number of colonies per beekeeper were the only common characteristics at European level. The tremendous variation in European apicultural industries has implication for any comprehensive epidemiological or economic analysis of the industry. This variability needs to be taken into account for such analysis as well as for future policy development. The industry would be served if beekeeping registration was uniformly implemented across member states. Better information on the package bee and queen production would help in understanding the ability of the industry to replace lost honey bee stocks.
Impact of Stressors on Honey Bees (Apis mellifera; Hymenoptera: Apidae): Some Guidance for Research Emerge from a Meta-Analysis
Bees play an essential role in plant pollination and their decline is a threat to crop yields and biodiversity sustainability. The causes of their decline have not yet been fully identified, despite the numerous studies that have been carried out, especially on Apis mellifera. This meta-analysis was conducted to identify gaps in the current research and new potential directions for research. The aim of this analysis of 293 international scientific papers was to achieve an inventory of the studied populations, the stressors and the methods used to study their impact on Apis mellifera. It also aimed to investigate the stressors with the greatest impact on bees and explore whether the evidence for an impact varies according to the type of study or the scale of study. According to this analysis, it is important to identify the populations and the critical developmental stages most at risk, and to determine the differences in stress sensibility between subspecies. This meta-analysis also showed that studies on climate change or habitat fragmentation were lacking. Moreover, it highlighted that technical difficulties in the field and the buffer effect of the colony represent methodological and biological barriers that are still difficult to overcome. Mathematical modeling or radio frequency identification (RFID) chips represent promising ways to overcome current methodological difficulties.
Emerging threats and opportunities to managed bee species in European agricultural systems: a horizon scan
Managed bee species provide essential pollination services that contribute to food security worldwide. However, managed bees face a diverse array of threats and anticipating these, and potential opportunities to reduce risks, is essential for the sustainable management of pollination services. We conducted a horizon scanning exercise with 20 experts from across Europe to identify emerging threats and opportunities for managed bees in European agricultural systems. An initial 63 issues were identified, and this was shortlisted to 21 issues through the horizon scanning process. These ranged from local landscape-level management to geopolitical issues on a continental and global scale across seven broad themes— Pesticides & pollutants, Technology, Management practices, Predators & parasites, Environmental stressors, Crop modification, and Political & trade influences . While we conducted this horizon scan within a European context, the opportunities and threats identified will likely be relevant to other regions. A renewed research and policy focus, especially on the highest-ranking issues, is required to maximise the value of these opportunities and mitigate threats to maintain sustainable and healthy managed bee pollinators within agricultural systems.
A horizon scan of future threats and opportunities for pollinators and pollination
Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods. Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results. Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations.
Pesticide use negatively affects bumble bees across European landscapes
Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species 1 , 2 , leading to restrictions on these compounds 3 . However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes 4 – 9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts 10 , 11 . These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use. Results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries find pesticides in bumble bee pollen to be associated with reduced colony performance, especially in areas of intensive agriculture.
WildPosh: Pan-European assessment, monitoring, and mitigation of chemical stressors on the health of wild pollinators
Wild fauna and flora are facing variable and challenging environmental disturbances. One of the animal groups that is most impacted by this, concerns pollinators. Pollinators face multiple threats, but the spread of anthropogenic chemicals (i.e. pesticides) form a major potential driver of these threats. WildPosh is a multi-actor, transdisciplinary project whose overarching mission and ambition are to significantly improve the evaluation of risk to pesticide exposure of wild pollinators, and enhance the sustainable health of pollinators and pollination services in Europe. As chemical exposure varies geographically, across cropping systems, inside the crop system and among pollinators, we will characterise exposure by doing fieldwork in 4 countries representing the four main climatic European regions, Mediterranean, Atlantic, Continental and Boreal climate in Germany, England, Estonia and Spain. We will also develop experiments in controlled conditions on different species of bees, syrphid flies, moths and butterflies, and collect in silico data on their traits and on toxicity of pesticides. With WildPosh, we aim to achieve the following objectives: 1. Determining the real-world agrochemical exposure profile of wild pollinators at landscape level, within and among sites; 2. Using integrated and controlled laboratory and semi-field experiments to characterise causal relationships between pesticides and pollinator health; 3. Building an open database on pollinator traits/distribution and chemicals to define exposure and toxicity scenarios by developing databases on ecological traits and the spatial distribution of pollinators in relation to their potential exposure to pesticide; 4. Proposing integrated systems-based risk assessment tools for risk assessment for wild pollinators; and 5. Driving policy and practice through interactive innovation, meeting the need for monitoring tools, novel and innovative screening protocols for practice and policymaker use.
Monitoring bee health in European agroecosystems using wing morphology and fat bodies
Current global change substantially threatens pollinators, which directly impacts the pollination services underpinning the stability, structure and functioning of ecosystems. Amongst these threats, many synergistic drivers, such as habitat destruction and fragmentation, increasing use of agrochemicals, decreasing resource diversity, as well as climate change, are known to affect wild and managed bees. Therefore, reliable indicators for pollinator sensitivity to such threats are needed. Biological traits, such as phenotype (e.g. shape, size and asymmetry) and storage reserves (e.g. fat body size), are important pollinator traits linked to reproductive success, immunity, resilience and foraging efficiency and, therefore, could serve as valuable markers of bee health and pollination service potential.
Monitoring bee health in European agro-ecosystems using wing morphology and fat bodies
Current global change substantially threatens pollinators, which directly impacts the pollination services underpinning the stability, structure and functioning of ecosystems. Amongst these threats, many synergistic drivers, such as habitat destruction and fragmentation, increasing use of agrochemicals, decreasing resource diversity, as well as climate change, are known to affect wild and managed bees. Therefore, reliable indicators for pollinator sensitivity to such threats are needed. Biological traits, such as phenotype (e.g. shape, size and asymmetry) and storage reserves (e.g. fat body size), are important pollinator traits linked to reproductive success, immunity, resilience and foraging efficiency and, therefore, could serve as valuable markers of bee health and pollination service potential. This data paper contains an extensive dataset of wing morphology and fat body content for the European honeybee ( Apis mellifera ) and the buff-tailed bumblebee ( Bombus terrestris ) sampled at 128 sites across eight European countries in landscape gradients dominated by two major bee-pollinated crops (apple and oilseed rape), before and after focal crop bloom and potential pesticide exposure. The dataset also includes environmental metrics of each sampling site, namely landscape structure and pesticide use. The data offer the opportunity to test whether variation in the phenotype and fat bodies of bees is structured by environmental factors and drivers of global change. Overall, the dataset provides valuable information to identify which environmental threats predominantly contribute to the modification of these traits.
Distribution of infectious and parasitic agents among three sentinel bee species across European agricultural landscapes
Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species ( Apis mellifera , Bombus terrestris and Osmia bicornis ) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees’ IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.