Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
111 result(s) for "Chehbouni, Abdelghani"
Sort by:
Moroccan Groundwater Resources and Evolution with Global Climate Changes
In semi-arid areas, many ecosystems and activities depend essentially on water availability. In Morocco, the increase of water demands combined to climate change induced decrease of precipitation put a lot of pressure on groundwater. This paper reports the results of updating and evaluation of groundwater datasets with regards to climate scenarios and institutional choices. The continuous imbalance between groundwater extraction and recharge caused a dramatic decline in groundwater levels (20 to 65 m in the past 30 years). Additionally, Morocco suffers from the degradation in groundwater quality due to seawater intrusion, nitrate pollution and natural salinity changes. Climate data analysis and scenarios predict that temperatures will increase by 2 to 4 °C and precipitation will decrease by 53% in all catchments over this century. Consequently, surface water availability will drastically decrease, which will lead to more extensive use of groundwater. Without appropriate measures, this situation will jeopardize water security in Morocco. In this paper, we zoom on the case the Souss-Massa basin, where management plans (artificial recharge, seawater desalination, and wastewater reuse) have been adopted to restore groundwater imbalance or, at least, mitigate the recorded deficits. These plans may save water for future generations and sustain crop production.
Dust Source Areas and Their Plume Extent Derived From Satellite Data Fields
In this study, prominent dust source areas are identified along with their plume extent using high temporal frequency satellite observations. Hourly dust plume observations of the Dust Belt from geostationary‐orbit satellites are analyzed for the 2017‐12–2022‐11 period. To identify dust source areas and their extents, we back‐track plumes to their source, assessing source areas in terms of emission frequency, contribution, and plume extent patterns. This method advances over traditional source allocation techniques that rely on polar‐orbiting satellites based on a few daily passes and meteorological wind fields for backtracking. Our findings indicate that Boreal summer is the most intense season for most sources, except in the Southern Sahara, which experiences winterly winds. Our analysis also reveals significant contributions from regions within the Sahara that experience expansive but infrequent dust storms, highlighting the importance of considering both frequency and magnitude in understanding dust emissions. Plain Language Summary This study focuses on the role of mineral dust, a significant climate constituent originating mainly from arid regions. Identifying where dust comes from and where it goes is essential for understanding how it affects the climate. To do so, we employ high temporal frequency satellite data to backtrack dust plumes to their sources, revealing key dust‐emitting regions and their seasonal variations. We also quantify each source area's frequency and magnitude of emissions and the spatial distribution of emanating dust plumes. Our findings show that summer is the peak season for most areas, except for the strongest dust sources, located in Southern Sahara, which peak in winter driven by seasonal winds. Additionally, some Saharan source areas exhibit severe storms but have been under‐emphasized because they were measured by the frequency of their storms. Key Points High‐temporal‐resolution images from geostationary‐orbit satellites enable precise back‐tracking of dust source areas Dust source areas are analyzed in terms of their emission frequency, contribution to the regional atmosphere, and corresponding plume extent Summer is the peak dust emission season for most sources in West Asia and Sahara and ephemeral lake beds are active during the dry season
Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review
Multi-source remote sensing-derived information on crops contributes significantly to agricultural monitoring, assessment, and management. In Africa, some challenges (i.e., small-scale farming practices associated with diverse crop types and agricultural system complexity, and cloud coverage during the growing season) can imped agricultural monitoring using multi-source remote sensing. The combination of optical remote sensing and synthetic aperture radar (SAR) data has emerged as an opportune strategy for improving the precision and reliability of crop type mapping and monitoring. This work aims to conduct an extensive review of the challenges of agricultural monitoring and mapping in Africa in great detail as well as the current research progress of agricultural monitoring based on optical and Radar satellites. In this context optical data may provide high spatial resolution and detailed spectral information, which allows for the differentiation of different crop types based on their spectral signatures. However, synthetic aperture radar (SAR) satellites can provide important contributions given the ability of this technology to penetrate cloud cover, particularly in African tropical regions, as opposed to optical data. This review explores various combination techniques employed to integrate optical and SAR data for crop type classification and their applicability and limitations in the context of African countries. Furthermore, challenges are discussed in this review as well as and the limitations associated with optical and SAR data combination, such as the data availability, sensor compatibility, and the need for accurate ground truth data for model training and validation. This study also highlights the potential of advanced modelling (i.e., machine learning algorithms, such as support vector machines, random forests, and convolutional neural networks) in improving the accuracy and automation of crop type classification using combined data. Finally, this review concludes with future research directions and recommendations for utilizing optical and SAR data combination techniques in crop type classification for African agricultural systems. Furthermore, it emphasizes the importance of developing robust and scalable classification models that can accommodate the diversity of crop types, farming practices, and environmental conditions prevalent in Africa. Through the utilization of combined remote sensing technologies, informed decisions can be made to support sustainable agricultural practices, strengthen nutritional security, and contribute to the socioeconomic development of the continent.
Multi-Sensors Remote Sensing Applications for Assessing, Monitoring, and Mapping NPK Content in Soil and Crops in African Agricultural Land
Demand for agricultural products is increasing as population continues to grow in Africa. To attain a higher crop yield while preserving the environment, appropriate management of macronutrients (i.e., nitrogen (N), phosphorus (P) and potassium (K)) and crops are of critical prominence. This paper aims to review the state of art of the use of remote sensing in soil agricultural applications, especially in monitoring NPK availability for widely grown crops in Africa. In this study, we conducted a substantial literature review of the use of airborne imaging technology (e.g., different platforms and sensors), methods available for processing and analyzing spectral information, and advances of these applications in farming practices by the African scientific community. Here we aimed to identify knowledge gaps in this field and challenges related to the acquisition, processing, and analysis of hyperspectral imagery for soil agriculture investigations. To do so, publications over the past 10 years (i.e., 2008–2021) in hyperspectral imaging technology and applications in monitoring macronutrients status for crops were reviewed. In this study, the imaging platforms and sensors, as well as the different methods of processing encountered across the literature, were investigated and their benefit for NPK assessment were highlighted. Furthermore, we identified and selected particular spectral regions, bands, or features that are most sensitive to describe NPK content (both in crop and soil) that allowed to characterize NPK. In this review, we proposed a hyperspectral data-based research protocol to quantify variability of NPK in soil and crop at the field scale for the sake of optimizing fertilizers application. We believe that this review will contribute promoting the adoption of hyperspectral technology (i.e., imaging and spectroscopy) for the optimization of soil NPK investigation, mapping, and monitoring in many African countries.
Evaluation of the Performance of Multi-Source Satellite Products in Simulating Observed Precipitation over the Tensift Basin in Morocco
The Tensift basin in Morocco is prominent for its ecological and hydrological diversity. This is marked by rivers flowing into areas such as Ourika. In addition to agriculture, the basin is a hub of variable land use systems. As such, it is important to gain a better understanding of the relationship between simulated and observed precipitation in this region to be able to better understand the role of precipitation in impacting the climate and water resources in the basin. This study evaluates the performance of multi-source satellite products against weather station precipitation in the basin. The satellite-product-based data were first collected for seven satellite products, namely PERSIANN, PERSIANN CDR, TRMM3B42, ARC2, RFE2, CHIRPS, and ERA5 (simulated precipitation) from the following repositories (CHRS iRain, RainSphere, NASA, EUMETSAT, NOAA, FEWS NET, ECMWF). Precipitation observation data from six weather stations, located at Tachedert (2343 m), Imskerbour (1404 m), Asni (1170 m), Grawa (550 m), Agdal (489 m), and Agafay (487 m), at different altitudes, latitudes, and temporal scales (1D, 1M, 1Y), over the period 13 May 2007 and 31 September 2019 over the Tensift basin were collected. The data were compared and analyzed through inferential statistics such as the Nash–Sutcliffe efficiency coefficient, bias, root-mean-square error (RMSE), root-mean-square deviation (RMSD), the standard deviation, the correlation coefficient (R), and the coefficient of determination (R2) and visualized through Taylor diagrams and scatterplots to visualize the closeness between the seven satellite products and the observed precipitation data. A second analysis was carried out on the monthly precipitation, resulting from the six weather stations, and based on the standardized precipitation index (SPI) to determine the onset, duration, and magnitude of the meteorological drought. The results show that PERSIANN CDR performs best and is more reliable regarding its ability to simulate precipitation over the basin. This is seen as PERSIANN CDR has significant rates for the different statistics (Bias: −0.05 (Daily Asni), RMSE: 2.86 (Daily Agdal), R: 0.83, R2:0.687 (Monthly Agdal)). The results also show that there are no major differences between the observed weather station and the satellite precipitation data. The best performance was attributed to PERSIANN CDR (for monthly and annual precipitation at all altitudes and for daily precipitation at high altitudes). However, most of the time, this product records low or negative Nash values (−6.06 (Annual Grawa)), due to the insufficient weather station data in the study area (Tensift). It was observed that TRMM overestimates precipitation during heavy precipitation and underestimates it during low precipitation. This makes it important for the latter observations to be viewed with caution due to the quality of annual comparison results and underscores the need to develop more efficient precipitation comparison approaches and datasets. Additionally, the performance of the satellite products is better at low altitudes and during wet years. Finally, it was concluded from the SPI that Tensift region has experienced 13 drought periods over the study period, with the longest event of 12 months being from Marsh 2015 to February 2016, and the most intense event with the highest drought severity (19.6) and the lowest SPI value (−2.66) being in 2019.
Remote Sensing in Irrigated Crop Water Stress Assessment
Optimizing water management in agriculture is of crucial importance, especially in arid and semi-arid regions where the existing water shortage is exacerbated by human activities and climate change [...]
Changes in mean and extreme temperature and precipitation events from different weighted multi-model ensembles over the northern half of Morocco
Internal variability, multiple emission scenarios, and different model responses to anthropogenic forcing are ultimately behind a wide range of uncertainties that arise in climate change projections. Model weighting approaches are generally used to reduce the uncertainty related to the choice of the climate model. This study compares three multi-model combination approaches: a simple arithmetic mean and two recently developed weighting-based alternatives. One method takes into account models’ performance only and the other accounts for models’ performance and independence. The effect of these three multi-model approaches is assessed for projected changes of mean precipitation and temperature as well as four extreme indices over northern Morocco. We analyze different widely used high-resolution ensembles issued from statistical (NEXGDDP) and dynamical (Euro-CORDEX and bias-adjusted Euro-CORDEX) downscaling. For the latter, we also investigate the potential added value that bias adjustment may have over the raw dynamical simulations. Results show that model weighting can significantly reduce the spread of the future projections increasing their reliability. Nearly all model ensembles project a significant warming over the studied region (more intense inland than near the coasts), together with longer and more severe dry periods. In most cases, the different weighting methods lead to almost identical spatial patterns of climate change, indicating that the uncertainty due to the choice of multi-model combination strategy is nearly negligible.
Deep Learning Approach with LSTM for Daily Streamflow Prediction in a Semi-Arid Area: A Case Study of Oum Er-Rbia River Basin, Morocco
Daily hydrological modelling is among the most challenging tasks in water resource management, particularly in terms of streamflow prediction in semi-arid areas. Various methods were applied in order to deal with this complex phenomenon, but recently data-driven models have taken a better space, given their ability to solve prediction problems in time series. In this study, we have employed the Long Short-Term Memory (LSTM) network to simulate the daily streamflow over the Ait Ouchene watershed (AIO) in the Oum Er-Rbia river basin in Morocco, based on a temporal sequence of in situ and remotely sensed hydroclimatic data ranging from 2001 to 2010. The analysis adopted in this work is based on three-dimension input required by the LSTM model (1); the input samples used three splitting approaches: 70% of the dataset as training, splitting the data considering the hydrological year and the cross-validation method; (2) the sequence length; (3) and the input features using two different scenarios. The prediction results demonstrate that the LSTM performs poorly using the default data input scenario, whereas the best results during the testing were found in a sequence length of 30 days using approach 3 (R2 = 0.58). In addition, the LSTM fed with the lagged data input scenario using the Forward Feature Selection (FFS) method provides high performance accuracy using approach 2 (R2 = 0.84) in a sequence length of 20 days. Eventually, in applications related to water resources management where data are limited, the use of the deep learning technique is able to create high predictive accuracy, which can be enhanced with the right combination subset of features by using FFS.
Integration of Hyperspectral Imaging and AI Techniques for Crop Type Mapping: Present Status, Trends, and Challenges
Accurate and efficient crop maps are essential for decision-makers to improve agricultural monitoring and management, thereby ensuring food security. The integration of advanced artificial intelligence (AI) models with hyperspectral remote sensing data, which provide richer spectral information than multispectral imaging, has proven highly effective in the precise discrimination of crop types. This systematic review examines the evolution of hyperspectral platforms, from Unmanned Aerial Vehicle (UAV)-mounted sensors to space-borne satellites (e.g., EnMAP, PRISMA), and explores recent scientific advances in AI methodologies for crop mapping. A review protocol was applied to identify 47 studies from databases of peer-reviewed scientific publications, focusing on hyperspectral sensors, input features, and classification architectures. The analysis highlights the significant contributions of Deep Learning (DL) models, particularly Vision Transformers (ViTs) and hybrid architectures, in improving classification accuracy. However, the review also identifies critical gaps, including the under-utilization of hyperspectral space-borne imaging, the limited integration of multi-sensor data, and the need for advanced modeling approaches such as Graph Neural Networks (GNNs)-based methods and geospatial foundation models (GFMs) for large-scale crop type mapping. Furthermore, the findings highlight the importance of developing scalable, interpretable, and transparent models to maximize the potential of hyperspectral imaging (HSI), particularly in underrepresented regions such as Africa, where research remains limited. This review provides valuable insights to guide future researchers in adopting HSI and advanced AI models for reliable large-scale crop mapping, contributing to sustainable agriculture and global food security.
Smart Weather Data Management Based on Artificial Intelligence and Big Data Analytics for Precision Agriculture
Smart management of weather data is an essential step toward implementing sustainability and precision in agriculture. It represents an important input for numerous tasks, such as crop growth, development, yield, and irrigation scheduling, to name a few. Advances in technology allow collecting this weather data from heterogeneous sources with high temporal resolution and at low cost. Generating and using these data in their raw form makes no sense, and therefore implementing adequate infrastructure and tools is necessary. For that purpose, this paper presents a smart weather data management system evaluated using data from a meteorological station installed in our study area covering the period from 2013 to 2020 at a half-hourly scale. The proposed system makes use of state-of-the-art statistical methods, machine learning, and deep learning models to derive actionable insights from these raw data. The general architecture is made up of four layers: data acquisition, data storage, data processing, and application layers. The data sources include real-time sensors, IoT devices, reanalysis data, and raw files. The data are then checked for errors and missing values using a proposed method based on ERA5-Land reanalysis data and deep learning. The resulting coefficient of determination (R2) and Root Mean Squared Error (RMSE) for this method were 0.96 and 0.04, respectively, for the scaled air temperature estimate. The MongoDB NoSQL database is used for storage thanks to its ability to deal with real-world big data. The system offers various services such as (i) weather time series forecasts, (ii) visualization and analysis of meteorological data, and (iii) the use of machine learning to estimate the reference evapotranspiration (ET0) needed for efficient irrigation. To this, the platform uses the XGBoost model to achieve the precision of the Penman–Monteith method while using a limited number of meteorological variables (air temperature and global solar radiation). Results for this approach give R2 = 0.97 and RMSE = 0.07. This system represents the first incremental step toward implementing smart and sustainable agriculture in Morocco.