Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Chelvanambi, Manoj"
Sort by:
Targeting the gut and tumor microbiota in cancer
Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously—hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient’s microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer. There exists tremendous opportunity to target microorganisms in the gut and other niches to help treat or even prevent cancer. This Review outlines how microbial targeting could become a pillar of personalized cancer care over the next 5 to 10 years.
STING Agonists as Cancer Therapeutics
The interrogation of intrinsic and adaptive resistance to cancer immunotherapy has identified lack of antigen presentation and type I interferon signaling as biomarkers of non-T-cell-inflamed tumors and clinical progression. A myriad of pre-clinical studies have implicated the cGAS/stimulator of interferon genes (STING) pathway, a cytosolic DNA-sensing pathway that drives activation of type I interferons and other inflammatory cytokines, in the host immune response against tumors. The STING pathway is also increasingly understood to have other anti-tumor functions such as modulation of the vasculature and augmentation of adaptive immunity via the support of tertiary lymphoid structure development. Many natural and synthetic STING agonists have entered clinical development with the first generation of intra-tumor delivered cyclic dinucleotides demonstrating safety but only modest systemic activity. The development of more potent and selective STING agonists as well as novel delivery systems that would allow for sustained inflammation in the tumor microenvironment could potentially augment response rates to current immunotherapy approaches and overcome acquired resistance. In this review, we will focus on the latest developments in STING-targeted therapies and provide an update on the clinical development and application of STING agonists administered alone, or in combination with immune checkpoint blockade or other approaches.
STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment
BackgroundThe degree of immune infiltration in tumors, especially CD8+ T cells, greatly impacts patient disease course and response to interventional immunotherapy. Enhancement of tumor infiltrating lymphocyte (TIL) is a critical element of efficacious therapy and one that may be achieved via administration of agents that promote tumor vascular normalization (VN) and/or induce the development of tertiary lymphoid structures (TLS) within the tumor microenvironment (TME).MethodsLow-dose stimulator of interferon genes (STING) agonist ADU S-100 (5 µg/mouse) was delivered intratumorally to established subcutaneous B16.F10 melanomas on days 10, 14 and 17 post-tumor inoculation. Treated and control tumors were isolated at various time points to assess transcriptional changes associated with VN and TLS formation via quantitative PCR (qPCR), with corollary immune cell composition changes in isolated tissues determined using flow cytometry and immunofluorescence microscopy. In vitro assays were performed on CD11c+ BMDCs treated with 2.5 µg/mL ADU S-100 or CD11c+ DCs isolated from tumor digests and associated transcriptional changes analyzed via qPCR or profiled using DNA microarrays. For T cell repertoireβ-CDR3 analyses, T cell CDR3 was sequenced from gDNA isolated from splenocytes and enzymatically digested tumors.ResultsWe report that activation of STING within the TME leads to slowed melanoma growth in association with increased production of antiangiogenic factors including Tnfsf15 (Vegi) and Cxcl10, and TLS-inducing factors including Ccl19, Ccl21, Lta, Ltb and Light. Therapeutic responses resulting from intratumoral STING activation were characterized by improved VN, enhanced tumor infiltration by CD8+ T cells and CD11c+ DCs and local TLS neogenesis, all of which were dependent on host expression of STING. Consistent with a central role for DC in TLS formation, ADU S-100-activated mCD11c+ DCs also exhibited upregulated expression of TLS promoting factors including lymphotoxin-α (LTA), interleukin (IL)-36, inflammatory chemokines and type I interferons in vitro and in vivo. TLS formation in ADU S-100-treated mice was associated with the development of a highly oligoclonal TIL repertoire enriched in expanded T cell clonotypes unique to the TME and not detected in the periphery.ConclusionsOur data support the premise that i.t. delivery of low-dose STING agonist promotes VN and a proinflammatory TME supportive of TLS formation, enrichment in the TIL repertoire and tumor growth control.
1328 The use of fecal filtrate transplant to enhance response to immune checkpoint blockade
BackgroundTreatment with immunotherapy has revolutionized cancer care. Nevertheless, strategies to enhance response remain an urgent need to overcome resistance to treatment. Our group and others have shown that distinct microbial signatures are associated with favorable response to ICB. Furthermore, recent trials have demonstrated that patients with ICB refractory cancer benefit from fecal microbiota transplantation (FMT) of stool samples from patients with beneficial response to ICB. However, the clinical application of FMT is limited by the rigorousness of screening criteria and needed volume of fecal material. The aim of our study is to identify the active components in FMT material that enhance response to ICB to develop microbiome-based strategies to improve cancer response to ICB. We hypothesized that microbial derivates within the stool (filtrate) can induce immunomodulation and enhance response to ICB.MethodsWe prepared filtrates from stool samples from melanoma patients who were complete responders (CR) and those who did not benefit from ICB (non-responder, NR). Filtrates were prepared via centrifugation and filtration of stool suspensions to remove bacteria, human cells, and debris. Eight-Twelve-week female germ-free C57BL6 mice received oral gavage of NR or CR FMT or NR or CR filtrate every other day (3 doses total). After a five-day period for engraftment, mice received subcutaneous injection of BP melanoma tumor cells, and were subsequently treated with anti-PD-L1 (3 doses total). Tumor measurement was conducted using a caliper. At endpoint, tumors and colon samples were collected for digital spatial profiling. To characterize the components of filtrates, we analyzed the proteome of the filtrates through mass spectrometry.ResultsTreatment of mice with both CR FMT and CR filtrate significantly improved response to anti-PD-L1 treatment, suggesting that microbial derivatives might be sufficient for inducing a response to ICB. In contrast, treatment with NR FMT and NR filtrate was associated with poor response, though responses were worse with NR FMT. Proteomic analysis of filtrates from CR donors demonstrated an enrichment of immunoglobulins and bacterial proteins from 4 major bacterial species compared to NR filtrate, suggesting a role for the microbiome in inducing a B cell response. Digital spatial profiling of tumor and colon samples are currently underway, as well as further characterization of the fecal filtrate to determine putative therapeutic targets to improve ICB response.ConclusionsTogether, these studies suggest that acellular components of FMT may confer improved response to ICB, though further studies are needed to derive optimal therapeutic targets and to gain mechanistic insights.AcknowledgementsThis study was supported by the National Institute of Health (R01CA219896) and the Stand Up to Cancer Foundation (SU2C Convergence 3.1316).Ethics ApprovalAll patients whose samples were used for in vivo and in vitro studies, provided voluntary informed consent to research procedures, including biospecimen collection, under Institutional Review Board (IRB) approved protocols. Animal studies were approved by the Institutional Animal Care and Use Committee (IACUC) at The UT MD Anderson Cancer Center.
Dendritic cell vaccines targeting tumor blood vessel antigens in combination with dasatinib induce therapeutic immune responses in patients with checkpoint-refractory advanced melanoma
BackgroundA first-in-human, randomized pilot phase II clinical trial combining vaccines targeting overexpressed, non-mutated tumor blood vessel antigens (TBVA) and tyrosine kinase inhibitor dasatinib was conducted in human leukocyte antigen (HLA)-A2+ patients with advanced melanoma.MethodsPatient monocyte-derived type-1-polarized dendritic cells were loaded with HLA-A2-presented peptides derived from TBVA (DLK1, EphA2, HBB, NRP1, RGS5, TEM1) and injected intradermally as a vaccine into the upper extremities every other week. Patients were randomized into one of two treatment arms receiving oral dasatinib (70 mg two times per day) beginning in week 5 (Arm A) or in week 1 (Arm B). Trial endpoints included T cell response to vaccine peptides (interferon-γ enzyme-linked immunosorbent spot), objective clinical response (Response Evaluation Criteria in Solid Tumors V.1.1) and exploratory tumor, blood and serum profiling of immune-associated genes/proteins.ResultsSixteen patients with advanced-stage cutaneous (n=10), mucosal (n=1) or uveal (n=5) melanoma were accrued, 15 of whom had previously progressed on programmed cell death protein 1 (PD-1) blockade. Of 13 evaluable patients, 6 patients developed specific peripheral blood T cell responses against ≥3 vaccine-associated peptides, with further evidence of epitope spreading. All six patients with specific CD8+ T cell response to vaccine-targeted antigens exhibited evidence of T cell receptor (TCR) convergence in association with preferred clinical outcomes (four partial response and two stabilization of disease (SD)). Seven patients failed to respond to vaccination (one SD and six progressive disease). Patients in Arm B (immediate dasatinib) outperformed those in Arm A (delayed dasatinib) for immune response rate (IRR; 66.7% vs 28.6%), objective response rate (ORR) (66.7% vs 0%), overall survival (median 15.45 vs 3.47 months; p=0.0086) and progression-free survival (median 7.87 vs 1.97 months; p=0.063). IRR (80% vs 25%) and ORR (60% vs 12.5%) was greater for females versus male patients. Tumors in patients exhibiting response to treatment displayed (1) evidence of innate and adaptive immune-mediated inflammation and TCR convergence at baseline, (2) on-treatment transcriptional changes associated with reduced hypoxia/acidosis/glycolysis, and (3) increased inflammatory immune cell infiltration and tertiary lymphoid structure neogenesis.ConclusionsCombined vaccination against TBVA plus dasatinib was safe and resulted in coordinating immunologic and/or objective clinical responses in 6/13 (46%) evaluable patients with melanoma, particularly those initiating treatment with both agents.Trial registration numberNCT01876212.
602 STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment
BackgroundThe degree of immune infiltration in tumors, especially CD8+ T cells, greatly impacts patient disease course and response to interventional immunotherapy. Hence, enhancement of TIL prevalence is a preferred clinical endpoint, one that may be achieved via administration of agents that normalize the tumor vasculature (VN) leading to improved immune cell recruitment and/or that induce the development of local tertiary lymphoid structures (TLS) within the tumor microenvironment (TME).MethodsLow-dose STING agonist ADU S-100 (5 μg/mouse) was delivered intratumorally to established s.c. B16.F10 melanomas on days 10, 14 and 17 post-tumor inoculation under an IACUC-approved protocol. Treated and control, untreated tumors were isolated at various time points to assess transcriptional changes associated with VN and TLS formation via qPCR, with corollary immune cell composition changes determined using flow cytometry and immunofluorescence microscopy. In vitro assays were performed on CD11c+ BMDCs treated with 2.5 μg/mL ADU S-100 (vs PBS control) and associated transcriptional changes analyzed via qPCR or profiled using DNA microarrays. For TCRβ-CDR3 analyses, CDR3 was sequenced from gDNA isolated from enzymatically digested tumors and splenocytes.ResultsWe report that activation of STING within the TME leads to slowed melanoma growth in association with increased production of angiostatic factors including Tnfsf15 (Vegi), Cxcl10 and Angpt1, and TLS inducing factors including Ccl19, Ccl21, Lta, Ltb and Tnfsf14 (Light). Therapeutic responses from intratumoral STING activation were characterized by increased vascular normalization (VN), enhanced tumor infiltration by CD8+ T cells and CD11c+ DCs and local TLS neo-genesis, all of which were dependent on host expression of STING. Consistent with a central role for DC in TLS formation, ex vivo ADU S-100-activated mCD11c+ DCs also exhibited upregulated expression of TLS promoting factors including lymphotoxin-α (LTA), IL-36, inflammatory chemokines and type I interferons. TLS formation was associated with the development of a therapeutic TIL TCR repertoire enriched in T cell clonotypes uniquely detected within the tumor but not the peripheral circulation in support or local T cell cross-priming within the TME.ConclusionsOur data support the premise that i.t. delivery of STING agonist promotes a pro-inflammatory TME in support of VN and TLS formation, leading to the local expansion of unique TIL repertoire in association with superior anti-melanoma efficacy.
Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome
The gut microbiota shapes the response to immune checkpoint inhibitors (ICIs) in cancer, however dietary and geographic influences have not been well-studied in prospective trials. To address this, we prospectively profiled baseline gut (fecal) microbiota signatures and dietary patterns of 103 trial patients from Australia and the Netherlands treated with neoadjuvant ICIs for high risk resectable metastatic melanoma and performed an integrated analysis with data from 115 patients with melanoma treated with ICIs in the United States. We observed geographically distinct microbial signatures of response and immune-related adverse events (irAEs). Overall, response rates were higher in Ruminococcaceae- dominated microbiomes than in Bacteroidaceae -dominated microbiomes. Poor response was associated with lower fiber and omega 3 fatty acid consumption and elevated levels of C-reactive protein in the peripheral circulation at baseline. Together, these data provide insight into the relevance of native gut microbiota signatures, dietary intake and systemic inflammation in shaping the response to and toxicity from ICIs, prompting the need for further studies in this area. A prospective analysis of gut microbiome signatures in patients treated with neoadjuvant immunocheckpoint blockade for high risk resectable metastatic melanoma identifies new links between microbiota signatures, dietary intake and systemic inflammation in shaping the response and toxicity to immunotherapy.
Monitoring and Modulating Diet and Gut Microbes to Enhance Response and Reduce Toxicity to Cancer Treatment
The gut microbiome comprises a diverse array of microbial species that have been shown to dynamically modulate host immunity both locally and systemically, as well as contribute to tumorigenesis. In this review, we discuss the scientific evidence on the role that gut microbes and diet play in response and toxicity to cancer treatment. We highlight studies across multiple cancer cohorts that have shown an association between particular gut microbiome signatures and an improved response to immune checkpoint blockade, chemotherapy, and adoptive cell therapies, as well as the role of particular microbes in driving treatment-related toxicity and how the microbiome can be modulated through strategies, such as fecal transplant. We also summarize the current literature that implicate high fiber and ketogenic diets in improved response rates to immunotherapy and chemotherapy, respectively. Finally, we discuss the relevance of these findings in the context of patient care, advocate for a holistic approach to cancer treatment, and comment on the next frontier of targeted gut and tumor microbiome modulation through novel therapeutics, dietary intervention, and precision-medicine approaches.
Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells
Even among genetically identical cancer cells, resistance to therapy frequently emerges from a small subset of those cells 1 – 7 . Molecular differences in rare individual cells in the initial population enable certain cells to become resistant to therapy 7 – 9 ; however, comparatively little is known about the variability in the resistance outcomes. Here we develop and apply FateMap, a framework that combines DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-derived cancer cells adopt molecularly, morphologically and functionally distinct resistant types. These resistant types are largely predetermined by molecular differences between cells before drug addition and not by extrinsic factors. Changes in the dose and type of drug can switch the resistant type of an initial cell, resulting in the generation and elimination of certain resistant types. Samples from patients show evidence for the existence of these resistant types in a clinical context. We observed diversity in resistant types across several single-cell-derived cancer cell lines and cell types treated with a variety of drugs. The diversity of resistant types as a result of the variability in intrinsic cell states may be a generic feature of responses to external cues. Anti-cancer treatment often results in a subset of the clonal cell population developing resistance to therapy, with resistant cells displaying a diversity of fate types resulting from the intrinsic variability among the clonal population before treatment.
Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy
Treatment with therapy targeting BRAF and MEK (BRAF/MEK) has revolutionized care in melanoma and other cancers; however, therapeutic resistance is common and innovative treatment strategies are needed 1 , 2 . Here we studied a group of patients with melanoma who were treated with neoadjuvant BRAF/MEK-targeted therapy ( NCT02231775 , n  = 51) and observed significantly higher rates of major pathological response (MPR; ≤10% viable tumour at resection) and improved recurrence-free survival (RFS) in female versus male patients (MPR, 66% versus 14%, P  = 0.001; RFS, 64% versus 32% at 2 years, P  = 0.021). The findings were validated in several additional cohorts 2 – 4 of patients with unresectable metastatic melanoma who were treated with BRAF- and/or MEK-targeted therapy ( n  = 664 patients in total), demonstrating improved progression-free survival and overall survival in female versus male patients in several of these studies. Studies in preclinical models demonstrated significantly impaired anti-tumour activity in male versus female mice after BRAF/MEK-targeted therapy ( P  = 0.006), with significantly higher expression of the androgen receptor in tumours of male and female BRAF/MEK-treated mice versus the control ( P  = 0.0006 and P  = 0.0025). Pharmacological inhibition of androgen receptor signalling improved responses to BRAF/MEK-targeted therapy in male and female mice ( P  = 0.018 and P  = 0.003), whereas induction of androgen receptor signalling (through testosterone administration) was associated with a significantly impaired response to BRAF/MEK-targeted therapy in male and female patients ( P  = 0.021 and P  < 0.0001). Together, these results have important implications for therapy. Treatment with neoadjuvant BRAF/MEK-targeted therapy results in higher rates of major pathological response in female compared with male patients with melanoma, and pharmacological inhibition of androgen receptor signalling improved the responses of male and female mice to BRAF/MEK-targeted therapy.