Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
125 result(s) for "Chen, Baojian"
Sort by:
Mutation of ZmDMP enhances haploid induction in maize
Doubled haploid (DH) breeding based on in vivo haploid induction has led to a new approach for maize breeding 1 . All modern haploid inducers used in DH breeding are derived from the haploid inducer line Stock6 . Two key quantitative trait loci, qhir1 and qhir8 , lead to high-frequency haploid induction 2 . Mutation of the gene MTL / ZmPLA1 / NLD in qhir1 could generate a ~2% haploid induction rate (HIR) 3 – 5 ; nevertheless, this mutation is insufficient for modern haploid inducers whose average HIR is ~10% 6 . Therefore, cloning of the gene underlying qhir8 is important for illuminating the genetic basis of haploid induction. Here, we present the discovery that mutation of a non- Stock6 -originating gene in qhir8 , namely, ZmDMP , enhances and triggers haploid induction. ZmDMP was identified by map-based cloning and further verified by CRISPR–Cas9-mediated knockout experiments. A single-nucleotide change in ZmDMP leads to a 2–3-fold increase in the HIR. ZmDMP knockout triggered haploid induction with a HIR of 0.1–0.3% and exhibited a greater ability to increase the HIR by 5–6-fold in the presence of mtl / zmpla1 / nld . ZmDMP was highly expressed during the late stage of pollen development and localized to the plasma membrane. These findings provide important approaches for studying the molecular mechanism of haploid induction and improving DH breeding efficiency in maize. By map-based cloning and knockout experiments, a study identified and validated ZmDMP to be one of the two genes known to control haploid induction in maize. A single-nucleotide mutation in ZmDMP causes a 2–3-fold increase in the haploid induction rate.
The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis
Somatic embryogenesis is an example of induced cellular totipotency, where embryos develop from vegetative cells rather than from gamete fusion. Somatic embryogenesis can be induced in vitro by exposing explants to growth regulators and/or stress treatments. The BABY BOOM (BBM) and LEAFY COTYLEDON1 (LEC1) and LEC2 transcription factors are key regulators of plant cell totipotency, as ectopic overexpression of either transcription factor induces somatic embryo formation from Arabidopsis (Arabidopsis thaliana) seedlings without exogenous growth regulators or stress treatments. Although LEC and BBM proteins regulate the same developmental process, it is not known whether they function in the same molecular pathway. We show that BBM transcriptionally regulates LEC1 and LEC2, as well as the two other LAFL genes, FUSCA3 (FUS3) and ABSCISIC ACID INSENSITIVE3 (ABI3). LEC2 and ABI3 quantitatively regulate BBM-mediated somatic embryogenesis, while FUS3 and LEC1 are essential for this process. BBM-mediated somatic embryogenesis is dose and context dependent, and the context-dependent phenotypes are associated with differential LAFL expression. We also uncover functional redundancy for somatic embryogenesis among other Arabidopsis BBM-like proteins and show that one of these proteins, PLETHORA2, also regulates LAFL gene expression. Our data place BBM upstream of other major regulators of plant embryo identity and totipotency.
BABY BOOM regulates early embryo and endosperm development
The BABY BOOM (BBM) AINTEGUMENTA-LIKE (AIL) AP2/ERF domain transcription factor is a major regulator of plant cell totipotency, as it induces asexual embryo formation when ectopically expressed. Surprisingly, only limited information is available on the role of BBM during zygotic embryogenesis. Here we reexamined BBM expression and function in the model plant Arabidopsis thaliana (Arabidopsis) using reporter analysis and newly developed CRISPR mutants. BBM was expressed in the embryo from the zygote stage and also in the maternal (nucellus) and filial (endosperm) seed tissues. Analysis of CRISPR mutant alleles for BBM (bbm-cr) and the redundantly acting AIL gene PLETHORA2 (PLT2) (plt2-cr) uncovered individual roles for these genes in the timing of embryo progression. We also identified redundant roles for BBM and PLT2 in endosperm proliferation and cellularization and the maintenance of zygotic embryo development. Finally, we show that ectopic BBM expression in the egg cell of Arabidopsis and the dicot crops Brassica napus and Solanum lycopersicon is sufficient to bypass the fertilization requirement for embryo development. Together these results highlight roles for BBM and PLT2 in seed development and demonstrate the utility of BBM genes for engineering asexual embryo development in dicot species.
A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis
Doubled haploid technology using inducer lines carrying mutations in Zm PLA1 / MTL / NLD and Zm DMP 1 – 4 has revolutionized traditional maize breeding. Zm PLA1 / MTL / NLD is conserved in monocots and has been used to extend the system from maize to other monocots 5 – 7 , but no functional orthologue has been identified in dicots, while Zm DMP -like genes exist in both monocots and dicots 4 , 8 , 9 . Here, we report that loss-of-function mutations in the Arabidopsis thaliana Zm DMP -like genes A t DMP8 and A t DMP9 induce maternal haploids, with an average haploid induction rate of 2.1 ± 1.1%. In addition, to facilitate haploid seed identification in dicots, we established an efficient FAST-Red fluorescent marker-based haploid identification system that enables the identification of haploid seeds with >90% accuracy. These results show that mutations in DMP genes also trigger haploid induction in dicots. The conserved expression patterns and amino acid sequences of Zm DMP -like genes in dicots suggest that DMP mutations could be used to develop in vivo haploid induction systems in dicots. Mutations in the Zm DMP gene induce maternal haploids and facilitate breeding in maize. Now, a study extends this system of maize to dicots, showing that loss-of-function mutations in the Arabidopsis Zm DMP -like genes also induce maternal haploids.
Squamocin Suppresses Tumor Growth through Triggering an Endoplasmic Reticulum Stress‐Associated Degradation of EZH2/MYC Axis
Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin. Mechanistically, squamocin disrupts mitochondrial respiratory Complex I function, reduces ATP production, and impairs HSP90α function, provoking endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). These intrinsic events within tumor cells enhance ER stress‐associated ubiquitylation and degradation by triggering ubiquitin via the E1 activase UBA6, facilitating ubiquitin transferring to E2 conjugate UBE2Z and increasing the activities of E3 ligase FBXW7 to degrade both EZH2 and MYC. The findings elucidate the role of squamocin in the degradation of oncoproteins EZH2 and MYC by triggering an ER stress‐associated UBA6‐UBE2Z‐FBXW7 ubiquitin cascade, providing insights that may accelerate therapeutic development targeting tumors driven by the EZH2/MYC axis. Squamocin disrupts mitochondrial respiratory Complex I function, reduces ATP production, and impairs HSP90α function, provoking endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in multiple cancer tumor models cell lines and in vivo tumor models. These intrinsic events within tumor cells enhance ER stress‐associated ubiquitylation and degradation of the EZH2/MYC axis by triggering the UBA6‐UBE2Z‐FBXW7 ubiquitin cascade.
In vivo haploid induction leads to increased frequency of twin-embryo and abnormal fertilization in maize
Background In vivo haploid induction (HI) based on Stock6 -derived inducer lines has been the most prevalent means of producing haploids. Nevertheless, the biological mechanism of HI is not fully understood, the twin-embryo kernels had been found during haploid induction, which may provide potential evidence for the abnormal double fertilization during HI. Results We investigated twin-embryo frequency in progenies of different haploid inducers. Results reveal that increasing the HI potential significantly improved the frequency of twin-embryo kernels. Compared with the average twin-embryo kernel frequency (average frequency = 0.07%) among progenies pollinated by the haploid inducer line CAUHOI, the frequency of twin-embryo was improved to 0.16% in progenies pollinated by the haploid inducer line CAU5. This result was further confirmed by pollinating single hybrid ND5598 with four haploid inducers possessing differentiated HIRs, where twin-embryo frequency was highly correlated with HIR. Among 237 twin-embryo kernels, we identified 30 haploid twin-embryo kernels (12.66%), a frequency which was much greater than the average HI rate for three other inducer lines (frequency range 2–10%). In addition, aneuploids, occurred at high frequency (8 in 41 twin plants). This level of aneuploidy provides new insight into the abnormal double fertilization during HI. Moreover, we observed differences in growth rate between twin plants in the field, as 4.22% of the twin plants grew at a significantly different rate. Both simple sequence repeats markers (SSR) and 3072 SNP-chip genotyping results revealed that > 90% of the twin plants shared the same origin, and the growth difference could be attributed to aneuploidy, competition for nutrients, and possible hormone regulation. Conclusion These results demonstrate that an enhanced HI ability can increase twin-embryo kernel frequency, and high frequency of both haploid twin-embryo kernels and aneuploidy observed in this research give us new insights to understand the mechanism of both HI and abnormal embryogenesis.
Effects of the Probiotic, Lactobacillus delbrueckii subsp. bulgaricus, as a Substitute for Antibiotics on the Gastrointestinal Tract Microbiota and Metabolomics Profile of Female Growing-Finishing Pigs
Lactobacillus delbrueckii subsp. bulgaricus (LDB) is an approved feed additive on the Chinese ‘Approved Feed Additives’ list. However, the possibility of LDB as an antibiotic replacement remains unclear. Particularly, the effect of LDB on microbiota and metabolites in the gastrointestinal tract (GIT) requires further explanation. This study aimed to identify the microbiota and metabolites present in fecal samples and investigate the relationship between the microbiota and metabolites to evaluate the potential of LDB as an antibiotic replacement in pig production. A total of 42 female growing-finishing pigs were randomly allocated into the antibiotic group (basal diet + 75 mg/kg aureomycin) and LDB (basal diet + 3.0 × 109 cfu/kg LDB) groups. Fecal samples were collected on days 0 and 30. Growth performance was recorded and assessed. 16S rRNA sequencing and liquid chromatography-mass spectrometry-based non-targeted metabolomics approaches were used to analyze the differences in microbiota and metabolites. Associations between the differences were calculated using Spearman correlations with the Benjamini–Hochberg adjustment. The LDB diet had no adverse effect on feed efficiency but slightly enhanced the average daily weight gain and average daily feed intake (p > 0.05). The diet supplemented with LDB increased Lactobacillus abundance and decreased that of Prevotellaceae_NK3B31_group spp. Dietary-supplemented LDB enhanced the concentrations of pyridoxine, tyramine, D-(+)-pyroglutamic acid, hypoxanthine, putrescine and 5-hydroxyindole-3-acetic acid and decreased the lithocholic acid concentration. The Lactobacillus networks (Lactobacillus, Peptococcus, Ruminococcaceae_UCG-004, Escherichia-Shigella, acetophenone, tyramine, putrescine, N-methylisopelletierine, N1-acetylspermine) and Prevotellaceae_NK3B31_group networks (Prevotellaceae_NK3B31_group, Treponema_2, monolaurin, penciclovir, N-(5-acetamidopentyl)acetamide, glycerol 3-phosphate) were the most important in the LDB effect on pig GIT health in our study. These findings indicate that LDB may regulate GIT function through the Lactobacillus and Prevotellaceae_NK3B31_group networks. However, our results were restrained to fecal samples of female growing-finishing pigs; gender, growth stages, breeds and other factors should be considered to comprehensively assess LDB as an antibiotic replacement in pig production.
Genome-Wide Association Studies, Runs of Homozygosity Analysis, and Copy Number Variation Detection to Identify Reproduction-Related Genes in Bama Xiang Pigs
Litter size and teat number are economically important traits in the porcine industry. However, the genetic mechanisms influencing these traits remain unknown. In this study, we analyzed the genetic basis of litter size and teat number in Bama Xiang pigs and evaluated the genomic inbreeding coefficients of this breed. We conducted a genome-wide association study to identify runs of homozygosity (ROH), and copy number variation (CNV) using the novel Illumina PorcineSNP50 BeadChip array in Bama Xiang pigs and annotated the related genes in significant single nucleotide polymorphisms and common copy number variation region (CCNVR). We calculated the ROH-based genomic inbreeding coefficients ( F ROH ) and the Spearman coefficient between F ROH and reproduction traits. We completed a mixed linear model association analysis to identify the effect of high-frequency copy number variation (HCNVR; over 5%) on Bama Xiang pig reproductive traits using TASSEL software. Across eight chromosomes, we identified 29 significant single nucleotide polymorphisms, and 12 genes were considered important candidates for litter-size traits based on their vital roles in sperm structure, spermatogenesis, sperm function, ovarian or follicular function, and male/female infertility. We identified 9,322 ROHs; the litter-size traits had a significant negative correlation to F ROH . A total of 3,317 CNVs, 24 CCNVR, and 50 HCNVR were identified using cnvPartition and PennCNV. Eleven genes related to reproduction were identified in CCNVRs, including seven genes related to the testis and sperm function in CCNVR1 (chr1 from 311585283 to 315307620). Two candidate genes ( NEURL1 and SH3PXD2A ) related to reproduction traits were identified in HCNVR34. The result suggests that these genes may improve the litter size of Bama Xiang by marker-assisted selection. However, attention should be paid to deter inbreeding in Bama Xiang pigs to conserve their genetic diversity.
Assessment of M. longissimus fibre types and metabolic enzymes in Bama miniature pigs and Landrace swine
Overt differences exist between Chinese local pigs and exotic pig breeds, especially in muscle growth rate and meat quality. However, the underlying molecular mechanisms remain unclear. This study aimed to assess muscle fibre types and metabolic enzymes in Bama miniature pigs and Landrace swine. Meat quality traits, including intramuscular fat content, and muscle colour, conductivity, and tenderness, were assessed in these pig breeds. Then, muscle fibre types were classified, and mRNA amounts and activities of lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) assessed, in M. longissimus from the two pig breeds, at various ages. Our data showed significantly higher back fat thickness, muscle conductivity, and intramuscular fat content in samples from Bama miniature pigs compared with the values obtained for Landrace pigs (p < .05). In addition, SDH activity was significantly higher, and LDH activity overtly lower in Bama pigs compared with Landrace swine (p < .05). Furthermore, myosin heavy-chain (MyHC) II A, II B, and II X mRNA levels in Bama miniature pigs at 180 were significantly higher than values obtained for Landrace pigs of the same age. Although MyHC I gene expression levels were similar in Bama miniature and Landrace pigs at 180 days of age, significantly higher amounts were obtained in 300 day old Bama miniature pigs compared with 180 day old Landrace pigs (p < .05). Collectively, these preliminary findings indicated that skeletal muscles from Bama miniature pigs may contain more oxidative fibres compared with those from Landrace pigs, which might explain the meat quality differences between the two pig breeds.
Cloning of Porcine Pituitary Tumor Transforming Gene 1 and Its Expression in Porcine Oocytes and Embryos
The maternal-to-embryonic transition (MET) is a complex process that occurs during early mammalian embryogenesis and is characterized by activation of the zygotic genome, initiation of embryonic transcription, and replacement of maternal mRNA with embryonic mRNA. The objective of this study was to reveal the temporal expression and localization patterns of PTTG1 during early porcine embryonic development and to establish a relationship between PTTG1 and the MET. To achieve this goal, reverse transcription-polymerase chain reaction (RT-PCR) was performed to clone porcine PTTG1. Subsequently, germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, zygotes, 2-, 4-, and 8-cell-stage embryos, morulas, and blastocysts were produced in vitro and their gene expression was analyzed. The results revealed that the coding sequence of porcine PTTG1 is 609-bp in length and that it encodes a 202-aa polypeptide. Using qRT-PCR, PTTG1 mRNA expression was observed to be maintained at high levels in GV- and MII-stage oocytes. The transcript levels in oocytes were also significantly higher than those in embryos from the zygote to blastocyst stages. Immunohistochemical analyses revealed that porcine PTTG1 was primarily localized to the cytoplasm and partially localized to the nucleus. Furthermore, the PTTG1 protein levels in MII-stage oocytes and zygotes were significantly higher than those in embryos from the 2-cell to blastocyst stage. After fertilization, the level of this protein began to decrease gradually until the blastocyst stage. The results of our study suggest that porcine PTTG1 is a new candidate maternal effect gene (MEG) that may participate in the processes of oocyte maturation and zygotic genome activation during porcine embryogenesis.