Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
39
result(s) for
"Chen, Cuimin"
Sort by:
Revealing the role of necroptosis microenvironment: FCGBP + tumor-associated macrophages drive primary liver cancer differentiation towards cHCC-CCA or iCCA
2024
Previous research has demonstrated that the conversion of hepatocellular carcinoma (HCC) to intrahepatic cholangiocarcinoma (iCCA) can be stimulated by manipulating the tumor microenvironment linked with necroptosis. However, the specific cells regulating the necroptosis microenvironment have not yet been identified. Additionally, further inquiry into the mechanism of how the tumor microenvironment regulates necroptosis and its impact on primary liver cancer(PLC) progression may be beneficial for precision therapy. We recruited a single-cell RNA sequencing dataset (scRNA-seq) with 34 samples from 4 HCC patients and 3 iCCA patients, and a Spatial Transcriptomic (ST) dataset including one each of HCC, iCCA, and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). Quality control, dimensionality reduction and clustering were based on Seurat software (v4.2.2) process and batch effects were removed by harmony (v0.1.1) software. The pseudotime analysis (also known as cell trajectory) in the single cell dataset was performed by monocle2 software (v2.24.0). Calculation of necroptosis fraction was performed by AUCell (v1.16.0) software. Switch gene analysis was performed by geneSwitches(v0.1.0) software. Dimensionality reduction, clustering, and spatial image in ST dataset were performed by Seurat (v4.0.2). Tumor cell identification, tumor subtype characterization, and cell type deconvolution in spot were performed by SpaCET (v1.0.0) software. Immunofluorescence and immunohistochemistry experiments were used to prove our conclusions. Analysis of intercellular communication was performed using CellChat software (v1.4.0). ScRNA-seq analysis of HCC and iCCA revealed that necroptosis predominantly occurred in the myeloid cell subset, particularly in FCGBP + SPP1 + tumor-associated macrophages (TAMs), which had the highest likelihood of undergoing necroptosis. The existence of macrophages undergoing necroptosis cell death was further confirmed by immunofluorescence. Regions of HCC with poor differentiation, cHCC-CCA with more cholangiocarcinoma features, and the tumor region of iCCA shared spatial colocalization with FCGBP + macrophages, as confirmed by spatial transcriptomics, immunohistochemistry and immunofluorescence. Pseudotime analysis showed that premalignant cells could progress into two directions, one towards HCC and the other towards iCCA and cHCC-CCA. Immunofluorescence and immunohistochemistry experiments demonstrated that the number of macrophages undergoing necroptosis in cHCC-CCA was higher than in iCCA and HCC, the number of macrophages undergoing necroptosis in cHCC-CCA with cholangiocarcinoma features was more than in cHCC-CCA with hepatocellular carcinoma features. Further investigation showed that myeloid cells with the highest necroptosis score were derived from the HCC_4 case, which had a severe inflammatory background on pathological histology and was likely to progress towards iCCA and cHCC-CCA. Switchgene analysis indicated that S100A6 may play a significant role in the progression of premalignant cells towards iCCA and cHCC-CCA. Immunohistochemistry confirmed the expression of S100A6 in PLC, the more severe inflammatory background of the tumor area, the more cholangiocellular carcinoma features of the tumor area, S100A6 expression was higher. The emergence of necroptosis microenvironment was found to be significantly associated with FCGBP + SPP1 + TAMs in PLC. In the presence of necroptosis microenvironment, premalignant cells appeared to transform into iCCA or cHCC-CCA. In contrast, without a necroptosis microenvironment, premalignant cells tended to develop into HCC, exhibiting amplified stemness-related genes (SRGs) and heightened malignancy.
Journal Article
Comprehensive single-cell transcriptomic and proteomic analysis reveals NK cell exhaustion and unique tumor cell evolutionary trajectory in non-keratinizing nasopharyngeal carcinoma
2023
Background
Nonkeratinizing nasopharyngeal carcinoma (NK-NPC) has a strong association with Epstein-Barr virus (EBV) infection. The role of NK cells and the tumor cell evolutionary trajectory in NK-NPC remain unclear. In this study, we aim to investigate the function of NK cell and the evolutionary trajectory of tumor cells in NK-NPC by single-cell transcriptomic analysis, proteomics and immunohistochemistry.
Methods
NK-NPC (n = 3) and normal nasopharyngeal mucosa cases (n = 3) were collected for proteomic analysis. Single-cell transcriptomic data of NK-NPC (n = 10) and nasopharyngeal lymphatic hyperplasia (NLH, n = 3) were obtained from Gene Expression Omnibus (GSE162025 and GSE150825). Quality control, dimension reduction and clustering were based on Seurat software (v4.0.2) process and batch effects were removed by harmony (v0.1.1) software. Normal cells of nasopharyngeal mucosa and tumor cells of NK-NPC were identified using copykat software (v1.0.8). Cell-cell interactions were explored using CellChat software (v1.4.0). Tumor cell evolutionary trajectory analysis was performed using SCORPIUS software (v1.0.8). Protein and gene function enrichment analyses were performed using clusterProfiler software (v4.2.2).
Results
A total of 161 differentially expressed proteins were obtained between NK-NPC (n = 3) and normal nasopharyngeal mucosa (n = 3) by proteomics (log
2
fold change > 0.5 and
P
value < 0.05). Most of proteins associated with the nature killer cell mediated cytotoxicity pathway were downregulated in the NK-NPC group. In single cell transcriptomics, we identified three NK cell subsets (NK1-3), among which NK cell exhaustion was identified in the NK3 subset with high ZNF683 expression (a signature of tissue-resident NK cell) in NK-NPC. We demonstrated the presence of this ZNF683 + NK cell subset in NK-NPC but not in NLH. We also performed immunohistochemical experiments with TIGIT and LAG3 to confirm NK cell exhaustion in NK-NPC. Moreover, the trajectory analysis revealed that the evolutionary trajectory of NK-NPC tumor cells was associated with the status of EBV infection (active or latent). The analysis of cell-cell interactions uncovered a complex network of cellular interactions in NK-NPC.
Conclusions
This study revealed that the NK cell exhaustion might be induced by upregulation of inhibitory receptors on the surface of NK cells in NK-NPC. Treatments for the reversal of NK cell exhaustion may be a promising strategy for NK-NPC. Meanwhile, we identified a unique evolutionary trajectory of tumor cells with active status of EBV-infection in NK-NPC for the first time. Our study may provide new immunotherapeutic targets and new sight of evolutionary trajectory involving tumor genesis, development and metastasis in NK-NPC.
Journal Article
Combined utility of Ki-67 index and tumor grade to stratify patients with pancreatic ductal adenocarcinoma who underwent upfront surgery
2023
Objective
To investigate the prognostic prediction of a new indicator, combined by tumor grade and Ki-67, in patients with resected pancreatic ductal adenocarcinoma (PDAC).
Methods
Data were retrospectively collected from consecutive patients who underwent primary resection of pancreas from December 2012 to December 2017. Tumor grade and Ki-67 were reviewed from routine pathological reports. G-Ki67 was classified as three categories as I (G1/2 and Ki-67 < 40%), II (G1/2 and Ki-67 ≥ 40%), and III(G3/4 and all Ki-67).
Results
Cox regression analyses revealed that tumor stage (II vs. I: hazard ratio (HR), 3.781; 95% confidence index (CI), 2.844–5.025;
P
< 0.001; III vs. I: HR, 7.476; 95% CI, 5.481–10.20;
P
< 0.001) and G-Ki67 (II vs. I: HR, 1.299; 95% CI, 1.038–1.624;
P
= 0.022; III vs. I: HR, 1.942; 95% CI, 1.477–2.554;
P
< 0.001) were independent prognostic factors in the developing cohort. The result was rectified in the validation cohort. In subgroups analysis, G-Ki67 (II vs. I: HR, 1.866 ; 95% CI, 1.045–3.334;
P
= 0.035; III vs. I: HR, 2.333 ; 95% CI, 1.156–4.705;
P
= 0.018) also had a high differentiation for survival prediction.
Conclusion
Our findings indicate that three-categories of G-Ki67 in resectable PDAC according to the routine pathological descriptions provided additional prognostic information complementary to the TNM staging system.
Journal Article
An unusual case report of indolent T-cell lymphoproliferative disorder with aberrant CD20 expression involving the gastrointestinal tract and bone marrow
by
Yin, Weihua
,
Ng, Chi-Sing
,
Wang, Xingen
in
Aberrant CD20 expression
,
Antigens, CD20 - analysis
,
Biomarkers - analysis
2018
Background
Indolent T-cell proliferative disorder of the GIT is a rare and provisional entity in the revised WHO 2016 classification. The patients usually have prolonged survival with persistent disease even without any treatment.
Case presentation
The 46 years old male patient has been followed up for more than 6 years without chemotherapy. Repeated gastrointestinal biopsies showed expansion of the lamina propria extending to the submucosa by small to medium sized lymphocytes with minimal cytologic atypia. The lymphoid cells were positive for CD3, CD43, TIA-1, CD2, CD7 and the B-cell marker CD20; but negative for CD4, CD8, PAX5, CD56, cyclinD1, granzyme (GraB) and Epstein Barr virus-encoded RNA (EBER). Ki-67(MIB1) index was less than 10%. Molecular tests demonstrated a clonal rearrangement for T-cell receptor γ (TCR γ) gene but immunoglobulin chain (IgH, IgK, IgL) gene remained germline. Recognition of possible aberrant CD20 expression in indolent T-cell LPD is important to avoid potential diagnostic pitfall and improper treatment.
Conclusions
We present an unusual case of indolent T-cell lymphoproliferative disorder with aberrant CD20 expression, Recognition of this unusual immunophenotype of indolent T-cell LPD of GI helps to eschew misdiagnosis of B-cell and other high grade lymphomas and inappropriate aggressive treatment.
Journal Article
A comprehensive analysis of the potential role of necroptosis in hepatocellular carcinoma using single-cell RNA Seq and bulk RNA Seq
2023
Purpose
Necroptosis plays an essential role in oncogenesis and tumor progression in hepatocellular carcinoma (HCC). This study aimed to investigate the role of necroptosis in the development and progression of HCC. Specifically, we constructed a prognostic prediction model using necroptosis-associated genes (NAGs) to predict patient outcomes.
Methods
Using data from The Cancer Genome Atlas (TCGA) database, we analyzed gene expression and clinical data. We identified a 5-gene model associated with NAGs and explored genetic features and immune cell infiltration using the CIBERSORT algorithm. In addition, we conducted single-cell RNA sequencing to investigate the potential role of necroptosis in HCC.
Results
We constructed a 5-gene prognostic model based on NAGs that demonstrated excellent predictive accuracy in both training and validation sets. Using multifactorial cox regression analysis, we confirmed the risk score derived from the model as an independent predictor of prognosis, surpassing other clinical characteristics. Patients with high risk scores had significantly worse prognosis than those with low risk scores. To enhance the clinical utility of the necroptosis score, we constructed an accurate nomogram. Additionally, we compared metabolic pathway and immune microenvironment differences between HCC tumors with high and low risk scores. Our single-cell RNA sequencing analyses revealed that necroptosis in HCC was primarily associated with a specific subset of macrophages.
Conclusions
Our study revealed the presence of two distinct necroptosis subtypes in HCC and developed a robust prognostic model with exceptional predictive accuracy. We observed significantly higher infiltration of M0 macrophages in the high-risk group. We propose that rescuing cytochrome
c
metabolism in HCC could serve as a potential therapeutic strategy. Furthermore, at a single-cell resolution, our analysis identified myeloid cells as the primary cells exhibiting necroptosis. Specifically, macrophages expressing CD5L, CETP, and MARCO, which may belong to a subset of tissue-resident macrophages, were found to be highly susceptible to necroptosis. These findings suggest the involvement of this specific macrophage subset in potential antitumor therapies. Our study provides novel insights into predicting patient prognosis and developing personalized therapeutic approaches for HCC.
Journal Article
Metal Nanoparticles: Advanced and Promising Technology in Diabetic Wound Therapy
by
Yuan, Xiaohuan
,
Yin, Chuan
,
Zheng, Qinzhou
in
Angiogenesis
,
antibacterial activity
,
Antibacterial agents
2024
Diabetic wounds pose a significant challenge to public health, primarily due to insufficient blood vessel supply, bacterial infection, excessive oxidative stress, and impaired antioxidant defenses. The aforementioned condition not only places a significant physical burden on patients' prognosis, but also amplifies the economic strain on the medical system in treating diabetic wounds. Currently, the effectiveness of available treatments for diabetic wounds is limited. However, there is hope in the potential of metal nanoparticles (MNPs) to address these issues. MNPs exhibit excellent anti-inflammatory, antioxidant, antibacterial and pro-angiogenic properties, making them a promising solution for diabetic wounds. In addition, MNPs stimulate the expression of proteins that promote wound healing and serve as drug delivery systems for small-molecule drugs. By combining MNPs with other biomaterials such as hydrogels and chitosan, novel dressings can be developed and revolutionize the treatment of diabetic wounds. The present article provides a comprehensive overview of the research progress on the utilization of MNPs for treating diabetic wounds. Building upon this foundation, we summarize the underlying mechanisms involved in diabetic wound healing and discuss the potential application of MNPs as biomaterials for drug delivery. Furthermore, we provide an extensive analysis and discussion on the clinical implementation of dressings, while also highlighting future prospects for utilizing MNPs in diabetic wound management. In conclusion, MNPs represent a promising strategy for the treatment of diabetic wound healing. Future directions include combining other biological nanomaterials to synthesize new biological dressings or utilizing the other physicochemical properties of MNPs to promote wound healing. Synthetic biomaterials that contain MNPs not only play a role in all stages of diabetic wound healing, but also provide a stable physiological environment for the wound-healing process.
Journal Article
Algae: A Robust Living Material Against Cancer
2023
Cancer is the second leading cause of death worldwide. Its incidence has been increasing in recent years, and it is becoming a major threat to human health. Conventional cancer treatment strategies, including surgery, chemotherapy, and radiotherapy, have faced problems such as drug resistance, toxic side effects and unsatisfactory therapeutic efficacy. Therefore, better development and utilization of biomaterials can improve the specificity and efficacy of tumor therapy. Algae, as a novel living material, possesses good biocompatibility. Although some reviews have elucidated several algae-based biomaterials for cancer treatment, the majority of the literature has focused on a limited number of algae. As a result, there is currently a lack of comprehensive reviews on the subject of anticancer algae. This review aims to address this gap by conducting a thorough examination of algal species that show potential for anticancer activity. Furthermore, our review will also elucidate the engineering strategies of algae and discuss the challenges and prospects associated with their implementation.Cancer is the second leading cause of death worldwide. Its incidence has been increasing in recent years, and it is becoming a major threat to human health. Conventional cancer treatment strategies, including surgery, chemotherapy, and radiotherapy, have faced problems such as drug resistance, toxic side effects and unsatisfactory therapeutic efficacy. Therefore, better development and utilization of biomaterials can improve the specificity and efficacy of tumor therapy. Algae, as a novel living material, possesses good biocompatibility. Although some reviews have elucidated several algae-based biomaterials for cancer treatment, the majority of the literature has focused on a limited number of algae. As a result, there is currently a lack of comprehensive reviews on the subject of anticancer algae. This review aims to address this gap by conducting a thorough examination of algal species that show potential for anticancer activity. Furthermore, our review will also elucidate the engineering strategies of algae and discuss the challenges and prospects associated with their implementation.
Journal Article
DBT parameters and dynamic monitoring during reservoir development, and distribution region prediction of remaining oil:A case study on the Sha-3~3 oil reservoir in the Liubei region, Nanpu sag
2012
In this study, compositional characteristics of crude oil, including the variation of aliphatic, aromatic and pyrrolic nitrogen compounds, were systematically monitored and investigated in a high water-cut oil reservoir over a short time.The results showed that among the widely used parameters indicative of oil maturity and migration, tetramethyl/monomethyl DBT and tricyclic terpane/(tricyclic terpane+C30 hopanoid) varied remarkably, and a positive correlation was observed between these two parameters.The variation of each of these parameters during waterflooding development was correlated with the flow effect of crude promoted by the water drive in oil reservoirs.A solid consistency was observed among the results of numerical simulation and development; the direction and pathway of waterflooding crude was indicated by Tetramethyl/monomethyl DBT, and the distribution region prediction of remaining oil hereby obtained.Therefore, these two parameters could be used as molecular tracers for the oil during waterflooding.This study would be of practical significance for geochemical dynamic monitoring and reservoir development.
Journal Article
A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew
2020
Powdery mildew, caused by
Blumeria graminis
f. sp.
tritici
(
Bgt
), is one of the most destructive diseases that pose a great threat to wheat production. Wheat landraces represent a rich source of powdery mildew resistance. Here, we report the map-based cloning of powdery mildew resistance gene
Pm24
from Chinese wheat landrace Hulutou. It encodes a tandem kinase protein (TKP) with putative kinase-pseudokinase domains, designated WHEAT TANDEM KINASE 3 (WTK3). The resistance function of
Pm24
was validated by transgenic assay, independent mutants, and allelic association analyses. Haplotype analysis revealed that a rare 6-bp natural deletion of lysine-glycine codons, endemic to wheat landraces of Shaanxi Province, China, in the kinase I domain (Kin I) of WTK3 is critical for the resistance function. Transgenic assay of WTK3 chimeric variants revealed that only the specific two amino acid deletion, rather than any of the single or more amino acid deletions, in the Kin I of WTK3 is responsible for gaining the resistance function of WTK3 against the
Bgt
fungus.
Powdery mildew is a major threat to world wheat yields. Here the authors describe the map-based cloning of
Pm24
, a gain-of-function powdery mildew resistance allele that encodes a tandem kinase-pseudokinase protein with a deletion in a kinase domain that is endemic to certain wheat landraces.
Journal Article
Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes
2017
Substantial efforts are being made to optimize the CRISPR/Cas9 system for precision crop breeding. The avoidance of transgene integration and reduction of off-target mutations are the most important targets for optimization. Here, we describe an efficient genome editing method for bread wheat using CRISPR/Cas9 ribonucleoproteins (RNPs). Starting from RNP preparation, the whole protocol takes only seven to nine weeks, with four to five independent mutants produced from 100 immature wheat embryos. Deep sequencing reveals that the chance of off-target mutations in wheat cells is much lower in RNP mediated genome editing than in editing with CRISPR/Cas9 DNA. Consistent with this finding, no off-target mutations are detected in the mutant plants. Because no foreign DNA is used in CRISPR/Cas9 RNP mediated genome editing, the mutants obtained are completely transgene free. This method may be widely applicable for producing genome edited crop plants and has a good prospect of being commercialized.
Protocols for crop genome editing would ideally be quick, efficient and specific while avoiding integration of transgenes into the genome of edited plants. Here, Liang
et al
. show that CRISPR/Cas9 ribonucleoproteins can be used to generate genome edited wheat plants in as little as nine weeks.
Journal Article