Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
63
result(s) for
"Chen, Haide"
Sort by:
Construction of a human cell landscape at single-cell level
2020
Single-cell analysis is a valuable tool for dissecting cellular heterogeneity in complex systems
1
. However, a comprehensive single-cell atlas has not been achieved for humans. Here we use single-cell mRNA sequencing to determine the cell-type composition of all major human organs and construct a scheme for the human cell landscape (HCL). We have uncovered a single-cell hierarchy for many tissues that have not been well characterized. We established a ‘single-cell HCL analysis’ pipeline that helps to define human cell identity. Finally, we performed a single-cell comparative analysis of landscapes from human and mouse to identify conserved genetic networks. We found that stem and progenitor cells exhibit strong transcriptomic stochasticity, whereas differentiated cells are more distinct. Our results provide a useful resource for the study of human biology.
Single-cell RNA sequencing is used to generate a dataset covering all major human organs in both adult and fetal stages, enabling comparison with similar datasets for mouse tissues.
Journal Article
Accurate estimation of cell-type composition from gene expression data
2019
The rapid development of single-cell transcriptomic technologies has helped uncover the cellular heterogeneity within cell populations. However, bulk RNA-seq continues to be the main workhorse for quantifying gene expression levels due to technical simplicity and low cost. To most effectively extract information from bulk data given the new knowledge gained from single-cell methods, we have developed a novel algorithm to estimate the cell-type composition of bulk data from a single-cell RNA-seq-derived cell-type signature. Comparison with existing methods using various real RNA-seq data sets indicates that our new approach is more accurate and comprehensive than previous methods, especially for the estimation of rare cell types. More importantly, our method can detect cell-type composition changes in response to external perturbations, thereby providing a valuable, cost-effective method for dissecting the cell-type-specific effects of drug treatments or condition changes. As such, our method is applicable to a wide range of biological and clinical investigations.
Bulk RNA-seq data harbors valuable information about gene expression levels from different cell types in tissue samples. Here, the authors develop DWLS, a computational method for estimating cell-type composition of bulk data by leveraging single-cell RNA-seq-derived cell-type signatures.
Journal Article
High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-seq
2023
Formalin-fixed paraffin-embedded (FFPE) tissues constitute a vast and valuable patient material bank for clinical history and follow-up data. It is still challenging to achieve single cell/nucleus RNA (sc/snRNA) profile in FFPE tissues. Here, we develop a droplet-based snRNA sequencing technology (snRandom-seq) for FFPE tissues by capturing full-length total RNAs with random primers. snRandom-seq shows a minor doublet rate (0.3%), a much higher RNA coverage, and detects more non-coding RNAs and nascent RNAs, compared with state-of-art high-throughput scRNA-seq technologies. snRandom-seq detects a median of >3000 genes per nucleus and identifies 25 typical cell types. Moreover, we apply snRandom-seq on a clinical FFPE human liver cancer specimen and reveal an interesting subpopulation of nuclei with high proliferative activity. Our method provides a powerful snRNA-seq platform for clinical FFPE specimens and promises enormous applications in biomedical research.
Formalin-fixed paraffin-embedded (FFPE) tissues constitute a vast and valuable patient material bank, but single nucleus RNAseq using such tissues is challenging. Here the authors develop a droplet-based method called snRandom-seq for high-throughput and sensitive single nucleus RNA-seq of FFPE samples.
Journal Article
Systematic identification of cell-fate regulatory programs using a single-cell atlas of mouse development
2022
Waddington’s epigenetic landscape is a metaphor frequently used to illustrate cell differentiation. Recent advances in single-cell genomics are altering our understanding of the Waddington landscape, yet the molecular mechanisms of cell-fate decisions remain poorly understood. We constructed a cell landscape of mouse lineage differentiation during development at the single-cell level and described both lineage-common and lineage-specific regulatory programs during cell-type maturation. We also found lineage-common regulatory programs that are broadly active during the development of invertebrates and vertebrates. In particular, we identified
Xbp1
as an evolutionarily conserved regulator of cell-fate determinations across different species. We demonstrated that
Xbp1
transcriptional regulation is important for the stabilization of the gene-regulatory networks for a wide range of mouse cell types. Our results offer genetic and molecular insights into cellular gene-regulatory programs and will serve as a basis for further advancing the understanding of cell-fate decisions.
Single-cell RNA-sequencing of seven mouse developmental stages identifies lineage-specific and shared regulatory programs controlling cell-fate decisions. Cross-species analysis associates differentiation potency with ribosomal protein gene expression.
Journal Article
Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing
by
Cheng, Chen
,
Han, Xiaoping
,
Huang, Daosheng
in
Animal Genetics and Genomics
,
Bioinformatics
,
Biomedical and Life Sciences
2018
Background
Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved.
Results
We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naïve-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naïve-like H9. Functionally, naïve-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells.
Conclusions
Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.
Journal Article
Cell landscape of larval and adult Xenopus laevis at single-cell resolution
2022
The rapid development of high-throughput single-cell RNA sequencing technology offers a good opportunity to dissect cell heterogeneity of animals. A large number of organism-wide single-cell atlases have been constructed for vertebrates such as
Homo sapiens
,
Macaca fascicularis
,
Mus musculus
and
Danio rerio
. However, an intermediate taxon that links mammals to vertebrates of more ancient origin is still lacking. Here, we construct the first
Xenopus
cell landscape to date, including larval and adult organs. Common cell lineage-specific transcription factors have been identified in vertebrates, including fish, amphibians and mammals. The comparison of larval and adult erythrocytes identifies stage-specific hemoglobin subtypes, as well as a common type of cluster containing both larval and adult hemoglobin, mainly at NF59. In addition, cell lineages originating from all three layers exhibits both antigen processing and presentation during metamorphosis, indicating a common regulatory mechanism during metamorphosis. Overall, our study provides a large-scale resource for research on
Xenopus
metamorphosis and adult organs.
Single-cell RNA sequencing technology offers a unique opportunity to dissect cell heterogeneity of animals. Here, the authors construct a Xenopus cell landscape including larval and adult organs to dissect cell heterogeneity of the amphibian.
Journal Article
Characterization of the Zebrafish Cell Landscape at Single-Cell Resolution
2021
Zebrafish have been found to be a premier model organism in biological and regeneration research. However, the comprehensive cell compositions and molecular dynamics during tissue regeneration in zebrafish remain poorly understood. Here, we utilized Microwell-seq to analyze more than 250,000 single cells covering major zebrafish cell types and constructed a systematic zebrafish cell landscape. We revealed single-cell compositions for 18 zebrafish tissue types covering both embryo and adult stages. Single-cell mapping of caudal fin regeneration revealed a unique characteristic of blastema population and key genetic regulation involved in zebrafish tissue repair. Overall, our single-cell datasets demonstrate the utility of zebrafish cell landscape resources in various fields of biological research.
Journal Article
A single-cell survey of cellular hierarchy in acute myeloid leukemia
by
Xiao, Yanyu
,
Fei, Lijiang
,
He, Jingsong
in
Acute myelocytic leukemia
,
Acute myeloid leukemia
,
Blood cancer
2020
Background
Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy and has a prognosis that varies with its genetic complexity. However, there has been no appropriate integrative analysis on the hierarchy of different AML subtypes.
Methods
Using Microwell-seq, a high-throughput single-cell mRNA sequencing platform, we analyzed the cellular hierarchy of bone marrow samples from 40 patients and 3 healthy donors. We also used single-cell single-molecule real-time (SMRT) sequencing to investigate the clonal heterogeneity of AML cells.
Results
From the integrative analysis of 191727 AML cells, we established a single-cell AML landscape and identified an AML progenitor cell cluster with novel AML markers. Patients with ribosomal protein high progenitor cells had a low remission rate. We deduced two types of AML with diverse clinical outcomes. We traced mitochondrial mutations in the AML landscape by combining Microwell-seq with SMRT sequencing. We propose the existence of a phenotypic “cancer attractor” that might help to define a common phenotype for AML progenitor cells. Finally, we explored the potential drug targets by making comparisons between the AML landscape and the Human Cell Landscape.
Conclusions
We identified a key AML progenitor cell cluster. A high ribosomal protein gene level indicates the poor prognosis. We deduced two types of AML and explored the potential drug targets. Our results suggest the existence of a cancer attractor.
Journal Article
Construction of the axolotl cell landscape using combinatorial hybridization sequencing at single-cell resolution
2022
The Mexican axolotl (
Ambystoma mexicanum
) is a well-established tetrapod model for regeneration and developmental studies. Remarkably, neotenic axolotls may undergo metamorphosis, a process that triggers many dramatic changes in diverse organs, accompanied by gradually decline of their regeneration capacity and lifespan. However, the molecular regulation and cellular changes in neotenic and metamorphosed axolotls are still poorly investigated. Here, we develop a single-cell sequencing method based on combinatorial hybridization to generate a tissue-based transcriptomic landscape of the neotenic and metamorphosed axolotls. We perform gene expression profiling of over 1 million single cells across 19 tissues to construct the first adult axolotl cell landscape. Comparison of single-cell transcriptomes between the tissues of neotenic and metamorphosed axolotls reveal the heterogeneity of non-immune parenchymal cells in different tissues and established their regulatory network. Furthermore, we describe dynamic gene expression patterns during limb development in neotenic axolotls. This system-level single-cell analysis of molecular characteristics in neotenic and metamorphosed axolotls, serves as a resource to explore the molecular identity of the axolotl and facilitates better understanding of metamorphosis.
The Mexican axolotl is a well-established tetrapod model for regeneration and development. Here the authors report a scRNA-seq method to profile neotenic, metamorphic and limb development stages, highlighting unique perturbation patterns of cell type-related gene expression throughout metamorphosis.
Journal Article
p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming
Human induced pluripotent stem (iPS) cells have great potential in regenerative medicine, but this depends on the integrity of their genomes. iPS cells have been found to contain a large number of
de novo
genetic alterations due to DNA damage response during reprogramming. Thus, to maintain the genetic stability of iPS cells is an important goal in iPS cell technology. DNA damage response can trigger tumor suppressor p53 activation, which ensures genome integrity of reprogramming cells by inducing apoptosis and senescence. p53 isoform Δ133p53 is a p53 target gene and functions to not only antagonize p53 mediated apoptosis, but also promote DNA double-strand break (DSB) repair. Here we report that Δ133p53 is induced in reprogramming. Knockdown of Δ133p53 results 2-fold decrease in reprogramming efficiency, 4-fold increase in chromosomal aberrations, whereas overexpression of Δ133p53 with 4 Yamanaka factors showes 4-fold increase in reprogamming efficiency and 2-fold decrease in chromosomal aberrations, compared to those in iPS cells induced only with 4 Yamanaka factors. Overexpression of Δ133p53 can inhibit cell apoptosis and promote DNA DSB repair foci formation during reprogramming. Our finding demonstrates that the overexpression of Δ133p53 not only enhances reprogramming efficiency, but also results better genetic quality in iPS cells.
Journal Article