Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
155
result(s) for
"Chen, Huizi"
Sort by:
Arginine methyltransferase PRMT5 methylates and stabilizes KLF5 via decreasing its phosphorylation and ubiquitination to promote basal-like breast cancer
2021
Krüppel-like factor 5 (KLF5) is an oncogenic factor that is highly expressed in basal-like breast cancer (BLBC) and promotes cell proliferation, survival, migration, stemness, and tumor growth; however, its posttranslational modifications are poorly defined. Protein arginine methyltransferase 5 (PRMT5) is also an oncogene implicated in various carcinomas, including breast cancer. In this study, we found that PRMT5 interacts with KLF5 and catalyzes the di-methylation of KLF5 at Arginine 57 (R57) in a methyltransferase activity-dependent manner in BLBC cells. Depletion or pharmaceutical inhibition (using PJ-68) of PRMT5 decreased the expression of KLF5 and its downstream target genes in vitro and in vivo. PRMT5-induced KLF5R57me2 antagonizes GSK3β-mediated KLF5 phosphorylation and subsequently Fbw7-mediated KLF5 ubiquitination and coupled degradation. Functionally, PRMT5 promotes breast cancer stem cell maintenance and proliferation, at least partially, by stabilizing KLF5. PRMT5 and KLF5 protein levels were positively correlated in clinical BLBCs. Taken together, PRMT5 methylates KLF5 to prevent its phosphorylation, ubiquitination, and degradation, and thus promotes breast cancer stem cell maintenance and proliferation. These findings suggest that PRMT5 is a potential therapeutic target for BLBC.
Journal Article
MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation
by
Zhao, Juanjuan
,
Zhou, Ya
,
Chen, Huizi
in
Biomedical and Life Sciences
,
Biomedicine
,
Brain diseases
2020
Background
Accumulating evidence has documented that microRNA-7 (miR-7) plays an important role in the pathology of various diseases. However, the potential role of miR-7 in brain tissue inflammation (BTI) remains unclear.
Methods
We detected the expression of miR-7 in LPS-induced murine BTI model and observed the possible effects of miR-7 deficiency on the pathology of BTI. To elucidate the mechanism, the target gene of miR-7 was screened out by Gene chip assay and its potential roles in BTI were evaluated by Western blot, immunofluorescence, and RNAi assay, respectively.
Results
MiR-7 was upregulated in brain tissue in BTI mice and its deficiency could significantly aggravate the pathology of brain tissue. Moreover, RORα, a new target molecule of miR-7, was upregulated in brain tissue from miR-7 deficiency BTI mice. Of note, downregulation of RORα could remarkably exacerbate the pathology of brain tissue and elevate the transduction of NF-κB and ERK1/2 signaling pathways in brain tissue from miR-7 deficiency BTI mice. Furthermore, RORα and miR-7 were dominantly co-expressed in neurons of BTI mice. Finally, RORα synergized with miR-7 to control the inflammatory reaction of neuronal cells in response to LPS stimulation.
Conclusions
MiR-7 expression is upregulated in BTI model. Moreover, miR-7 synergizes with its target gene RORα to control the inflammation reaction of neurons, thereby orchestrating the pathology of BTI.
Journal Article
Chromosome-level genome assembly of Jaguar guapote (Parachromis manguensis) by massive parallel sequencing
2025
Parachromis managuensis
is a native cichlid fish from Central America and is the most commonly traded species within its genus. This study presents the first chromosome-scale genome assembly of
P. managuensis
using PacBio HiFi long reads and Hi-C sequencing data. The size of the
P. managuensis
genome is approximately 896.66 Mb, with a scaffold N50 of 38.19 Mb. The assembled genome demonstrates high quality in terms of completeness and accuracy, with a BUSCO score of 98.85% and a quality value (QV) of 50.95. A total of 888.60 Mb (99.10%) sequences were anchored to 24 pseudochromosomes. Additionally, 21,145 protein-coding genes and 325.58 Mb (~36.31%) repetitive sequences were identified. This chromosome-level genome assembly provides a crucial reference for studying the evolution and ecological adaptability of
P. managuensis
.
Journal Article
Cecal Infusion of Sodium Propionate Promotes Intestinal Development and Jejunal Barrier Function in Growing Pigs
2019
Short-chain fatty acids (SCFAs) produced by microbial fermentation facilitate the differentiation and proliferation of intestinal epithelium. However, the role of individual SCFAs, such as propionate, on intestinal development is still unclear. In the present study, sixteen barrows fitted with a cecal fistula were randomly divided into two groups for cecal infusion of either saline (control group) or sodium propionate (propionate group). After 28 days, the length and the relative weight of intestinal segments were calculated, the intestinal morphology was assessed, and the expression of tight junction protein was measured using qPCR and Western blotting. Compared to the saline group, the length of the colon was significantly increased in the propionate group (p < 0.05). The jejunal villi length and villi/crypt ratio in the propionate group were significantly higher than in the saline group (p < 0.05). Furthermore, propionate infusion significantly upregulated the mRNA levels of Claudin-4 and the expression of Claudin-1, Claudin-4, and Occludin protein in the jejunal mucosa (p < 0.05). Collectively, these findings revealed that the short-chain fatty acid propionate in the hindgut contributed to intestinal development, and selectively enhanced jejunal tight junction protein expression.
Journal Article
Human Cytomegalovirus Encoded miR-US25-1-5p Attenuates CD147/EMMPRIN-Mediated Early Antiviral Response
by
Chen, Zhinan
,
Chen, Huizi
,
Chen, Jun
in
3' Untranslated regions
,
Antiviral drugs
,
CD147 antigen
2017
Cellular receptor-mediated signaling pathways play critical roles during the initial immune response to Human Cytomegalovirus (HCMV) infection. However, the involvement of type-I transmembrane glycoprotein CD147/EMMPRIN (extracellular matrix metalloproteinase inducer) in the antiviral response to HCMV infection is still unknown. Here, we demonstrated the specific knockdown of CD147 significantly decreased HCMV-induced activation of NF-κB and Interferon-beta (IFN-β), which contribute to the cellular antiviral responses. Next, we confirmed that HCMV-encoded miR-US25-1-5p could target the 3′ UTR (Untranslated Region) of CD147 mRNA, and thus facilitate HCMV lytic propagation at a low multiplicity of infection (MOI). The expression and secretion of Cyclophilin A (sCyPA), as a ligand for CD147 and a proinflammatory cytokine, were up-regulated in response to HCMV stimuli. Finally, we confirmed that CD147 mediated HCMV-triggered antiviral signaling via the sCyPA-CD147-ERK (extracellular regulated protein kinases)/NF-κB axis signaling pathway. These findings reveal an important HCMV mechanism for evading antiviral innate immunity through its encoded microRNA by targeting transmembrane glycoprotein CD147, and a potential cause of HCMV inflammatory disorders due to the secretion of proinflammatory cytokine CyPA.
Journal Article
YB-1 is a positive regulator of KLF5 transcription factor in basal-like breast cancer
2022
Y-box binding protein 1 (YB-1) is a well-known oncogene highly expressed in various cancers, including basal-like breast cancer (BLBC). Beyond its role as a transcription factor, YB-1 is newly defined as an epigenetic regulator involving RNA 5-methylcytosine. However, its specific targets and pro-cancer functions are poorly defined. Here, based on clinical database, we demonstrate a positive correlation between Kruppel-like factor 5 (KLF5) and YB-1 expression in breast cancer patients, but a negative correlation with that of Dachshund homolog 1 (DACH1). Mechanistically, YB-1 enhances KLF5 expression not only through transcriptional activation that can be inhibited by DACH1, but also by stabilizing KLF5 mRNA in a RNA 5-methylcytosine modification-dependent manner. Additionally, ribosomal S6 kinase 2 (RSK2) mediated YB-1 phosphorylation at Ser102 promotes YB-1/KLF5 transcriptional complex formation, which co-regulates the expression of BLBC specific genes, Keratin 16 (KRT16) and lymphocyte antigen 6 family member D (Ly6D), to promote cancer cell proliferation. The RSK inhibitor, LJH685, suppressed BLBC cell tumourigenesis in vivo by disturbing YB-1-KLF5 axis. Our data suggest that YB-1 positively regulates KLF5 at multiple levels to promote BLBC progression. The novel RSK2-YB-1-KLF5-KRT16/Ly6D axis provides candidate diagnostic markers and therapeutic targets for BLBC.
Journal Article
A decoupling controller by hierarchical backstepping method for straight-line tracking of unmanned surface vehicle
by
Xie, Shaorong
,
Peng, Yan
,
Zhang, Dan
in
backstepping control method
,
disturbance observer
,
Lyapunov direct method
2019
For the straight-line tracking of unmanned surface vehicle (USV), most researchers pay much attention to the course control. In the present work, a strategy of decoupling and control of the speed and yaw of the USV is proposed to maintain a constant speed and a desired course, which ensures the high efficiency of ship-borne sonar during a seabed exploration. Since USV is 3-DOF underactuated system, the Lyapunov direct method is combined with the hierarchical back stepping control method to achieve the desired speed and yaw angle of USV under the external disturbances, such as wind, waves and currents. A disturbance observer is then constructed to compensate the oscillation by predicting changes in external disturbances. The control system is further proved to be asymptotically stable by the Lyapunov theory. The validity and robustness of this decoupling controller is verified by applying to a practical USV in the straight-line tracking.
Journal Article
Inhibition of super enhancer downregulates the expression of KLF5 in basal-like breast cancers
by
Chen, Chuan-Huizi
,
Liu, Rong
,
Ding, Jiancheng
in
Azepines - pharmacology
,
Blotting, Western
,
Breast cancer
2019
The transcription factor KLF5 (Krüpple-like factor 5) is highly expressed in basal-like breast cancer (BLBC), which promotes cell proliferation, survival, migration and stemness, serving as a potential therapeutic target. In the current study, a super-enhancer (SE) was identified to be located downstream of the
gene in BLBC cell lines, HCC1806 and HCC1937. JQ-1, a BRD4 inhibitor, inhibits the expression and activity of KLF5 in both HCC1806 and HCC1937 cells in a time- and dose-dependent manner. Compound 870, an in-house BRD4 inhibitor, exhibited higher potency than JQ-1 to inhibit KLF5 and BLBC growth by arresting cells in G1 phase. Additionally, THZ1, a CDK7 inhibitor, also inhibits KLF5 and BLBC growth in a similar manner. Our findings suggested that KLF5 is regulated by SE, and modulation of SE could be an effective therapeutic strategy for treating BLBC.
Journal Article
Mifepristone Derivative FZU-00,003 Suppresses Triple-negative Breast Cancer Cell Growth partially via miR-153-KLF5 axis
by
Zhao, Ping
,
Liang, Huichun
,
Chen, Chuan-Huizi
in
Antibodies
,
Anticancer properties
,
Apoptosis
2020
Triple-negative breast cancer (TNBC) is one of the most malignant breast cancers lacking targeted therapeutics currently. We recently reported that mifepristone (MIF), a drug regularly used for abortion, suppresses TNBC cell growth by inhibiting KLF5 expression via inducing miR-153. However, its anticancer efficacy is only modest at high dose. In order to enhance the anticancer activities, a focused compound library containing 17 compounds by altering the sensitive metabolic region of mifepristone has been designed and synthesized. We first tested the cell growth inhibitory effects of these compounds in TNBC cell lines. Among them, FZU-00,003 displayed the most potent efficiency. FZU-00,003 suppresses TNBC cell growth, cell cycle progression and induces apoptosis more effectively than MIF does. Consistently, FZU-00,003 induces miR-153 expression and suppressed KLF5 expression at much lower dosages than MIF does. Furthermore, FZU-00,003 inhibits tumor growth more potently than MIF does. Taken together, the MIF derivative, FZU-00,003 may serve as a better therapeutic compound for TNBC than MIF.
Journal Article
Caecal infusion of the short‐chain fatty acid propionate affects the microbiota and expression of inflammatory cytokines in the colon in a fistula pig model
2018
Summary Short‐chain fatty acids (SCFAs), particularly butyrate, are known to suppress inflammation, and regulate the gut bacterial ecology. However, little is known about propionate. We report here that propionate infusion in the caecum dramatically affected the structure of colonic microbiota of pigs based on 16s rRNA high‐throughput sequencing. Sixteen pig models were perfused with saline or sodium propionate by a fistula in the caecum. At d 28, all pigs were slaughtered for analysing bacterial metabolites, colonic microbiota and the expression of genes related to inflammation. The results showed that caecal infusion of sodium propionate increased the concentration of propionate and decreased the butyrate concentration in colonic content. For biogenic amines, the tyramine concentration was increased, while the concentration of cadaverine was decreased by infusion of sodium propionate. Furthermore, at the level of phylum, propionate increased the abundance of Bacteroidetes and reduced the abundance of Firmicutes. Prevotella and Bacteroides counts were increased, while Turicibacter abundance was decreased at the level of genus. Real‐time qPCR showed that the expression of NF‐κB and IL‐18 was upregulated by propionate infusion, whereas no significant differences were observed for the expression of other genes related to inflammatory processes. Taken together, these results provide a new evidence for the role of short‐chain fatty acid propionate on the composition of microbial community and inflammatory cytokines. Cecal infusion of sodium propionate affects the composition of colonic microbiota.
Journal Article