Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
44
result(s) for
"Chen, Songyue"
Sort by:
Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency
2022
Among kinds of flexible tactile sensors, piezoelectric tactile sensor has the advantage of fast response for dynamic force detection. However, it suffers from low sensitivity at high-frequency dynamic stimuli. Here, inspired by finger structure—rigid skeleton embedded in muscle, we report a piezoelectric tactile sensor using a rigid-soft hybrid force-transmission-layer in combination with a soft bottom substrate, which not only greatly enhances the force transmission, but also triggers a significantly magnified effect in
d
31
working mode of the piezoelectric sensory layer, instead of conventional
d
33
mode. Experiments show that this sensor exhibits a super-high sensitivity of 346.5 pC N
−1
(@ 30 Hz), wide bandwidth of 5–600 Hz and a linear force detection range of 0.009–4.3 N, which is ~17 times the theoretical sensitivity of
d
33
mode. Furthermore, the sensor is able to detect multiple force directions with high reliability, and shows great potential in robotic dynamic tactile sensing.
Designing efficient tactile sensors under high-frequency dynamic stimuli remains a challenge. Here, the authors demonstrate piezoelectric tactile sensor with sensitivity of 346.5 pCN−1, wide bandwidth of 5–600 Hz and a linear force detection range of 0.009–4.3 N using a rigid-soft hybrid force-transmission-layer in combination with a soft bottom substrate.
Journal Article
Surface Potential/Charge Sensing Techniques and Applications
by
Yang, Jing
,
Chen, Songyue
,
Dong, Hepeng
in
Catalysis
,
Cell adhesion & migration
,
Deoxyribonucleic acid
2020
Surface potential and surface charge sensing techniques have attracted a wide range of research interest in recent decades. With the development and optimization of detection technologies, especially nanosensors, new mechanisms and techniques are emerging. This review discusses various surface potential sensing techniques, including Kelvin probe force microscopy and chemical field-effect transistor sensors for surface potential sensing, nanopore sensors for surface charge sensing, zeta potentiometer and optical detection technologies for zeta potential detection, for applications in material property, metal ion and molecule studies. The mechanisms and optimization methods for each method are discussed and summarized, with the aim of providing a comprehensive overview of different techniques and experimental guidance for applications in surface potential-based detection.
Journal Article
A reconfigurable and conformal liquid sensor for ambulatory cardiac monitoring
2024
The severe mismatch between solid bioelectronics and dynamic biological tissues has posed enduring challenges in the biomonitoring community. Here, we developed a reconfigurable liquid cardiac sensor capable of adapting to dynamic biological tissues, facilitating ambulatory cardiac monitoring unhindered by motion artifacts or interference from other biological activities. We employed an ultrahigh-resolution 3D scanning technique to capture tomographic images of the skin on the wrist. Then, we established a theoretical model to gain a deep understanding of the intricate interaction between our reconfigurable sensor and dynamic biological tissues. To properly elucidate the advantages of this sensor, we conducted cardiac monitoring alongside benchmarks such as the electrocardiogram. The liquid cardiac sensor was demonstrated to produce stable signals of high quality (23.1 dB) in ambulatory settings.
The mismatch between solid bioelectronics and biological tissue presents a grand challenge to current skin electronics. Here, we developed a reconfigurable liquid cardiac sensor capable of adapting to biological tissues, allowing ambulatory cardiac monitoring.
Journal Article
Digital light processing printed hydrogel scaffolds with adjustable modulus
2024
Hydrogels are extensively explored as biomaterials for tissue scaffolds, and their controlled fabrication has been the subject of wide investigation. However, the tedious mechanical property adjusting process through formula control hindered their application for diverse tissue scaffolds. To overcome this limitation, we proposed a two-step process to realize simple adjustment of mechanical modulus over a broad range, by combining digital light processing (DLP) and post-processing steps. UV-curable hydrogels (polyacrylamide-alginate) are 3D printed via DLP, with the ability to create complex 3D patterns. Subsequent post-processing with Fe
3+
ions bath induces secondary crosslinking of hydrogel scaffolds, tuning the modulus as required through soaking in solutions with different Fe
3+
concentrations. This innovative two-step process offers high-precision (10 μm) and broad modulus adjusting capability (15.8–345 kPa), covering a broad range of tissues in the human body. As a practical demonstration, hydrogel scaffolds with tissue-mimicking patterns were printed for cultivating cardiac tissue and vascular scaffolds, which can effectively support tissue growth and induce tissue morphologies.
Journal Article
Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors
2024
Heart-on-a-chip (HoC) has emerged as a highly efficient, cost-effective device for the development of engineered cardiac tissue, facilitating high-throughput testing in drug development and clinical treatment. HoC is primarily used to create a biomimetic microphysiological environment conducive to fostering the maturation of cardiac tissue and to gather information regarding the real-time condition of cardiac tissue. The development of architectural design and advanced manufacturing for these “3S” components, scaffolds, stimulation, and sensors is essential for improving the maturity of cardiac tissue cultivated on-chip, as well as the precision and accuracy of tissue states. In this review, the typical structures and manufacturing technologies of the “3S” components are summarized. The design and manufacturing suggestions for each component are proposed. Furthermore, key challenges and future perspectives of HoC platforms with integrated “3S” components are discussed.
Journal Article
Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures
2021
Functional materials with high viscosity and solid materials have received more and more attentions in flexible pressure sensors, which are inadequate in the most used molding method. Herein, laser direct writing (LDW) method is proposed to fabricate flexible piezoresistive sensors with microstructures on PDMS/ MWCNTs composites with an 8% MWCNTs mass fraction. By controlling laser energy, microstructures with different geometries can be obtained, which significantly impacts the performances of the sensors. Subsequently, curved microcones with excellent performance are fabricated under parameters of f = 40 kHz and v = 150 mm·s-1. The sensor exhibits continuous multi-linear sensitivity, ultrahigh ori-ginal sensitivity of 21.80 % kPa-1, wide detection range of over 20 kPa, response/recovery time of ~100 ms and good cycle stability for more than 1000 times. Besides, obvious resistance variation can be observed when tiny pressure (a peanut of 30 Pa) is applied. Finally, the flexible piezoresistive sensor can be applied for LED brightness controlling, pulse detection and voice recognition.
Journal Article
Integrated Manufacturing of Suspended and Aligned Nanofibrous Scaffold for Structural Maturation and Synchronous Contraction of HiPSC-Derived Cardiomyocytes
by
Yang, Jianhui
,
Xu, Feng
,
Qiu, Bin
in
aligned nanofibers
,
anisotropic cardiac tissue
,
Bioengineering
2023
Electrospun nanofiber constructs represent a promising alternative for mimicking the natural extracellular matrix in vitro and have significant potential for cardiac patch applications. While the effect of fiber orientation on the morphological structure of cardiomyocytes has been investigated, fibers only provide contact guidance without accounting for substrate stiffness due to their deposition on rigid substrates (e.g., glass or polystyrene). This paper introduces an in situ fabrication method for suspended and well aligned nanofibrous scaffolds via roller electrospinning, providing an anisotropic microenvironment with reduced stiffness for cardiac tissue engineering. A fiber surface modification strategy, utilizing oxygen plasma treatment combined with sodium dodecyl sulfate solution, was proposed to maintain the hydrophilicity of polycaprolactone (PCL) fibers, promoting cellular adhesion. Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs), cultured on aligned fibers, exhibited an elongated morphology with extension along the fiber axis. In comparison to Petri dishes and suspended random fiber scaffolds, hiPSC-CMs on suspended aligned fiber scaffolds demonstrated enhanced sarcomere organization, spontaneous synchronous contraction, and gene expression indicative of maturation. This work demonstrates the suspended and aligned nano-fibrous scaffold provides a more realistic biomimetic environment for hiPSC-CMs, which promoted further research on the inducing effect of fiber scaffolds on hiPSC-CMs microstructure and gene-level expression.
Journal Article
Nanofiber self-consistent additive manufacturing process for 3D microfluidics
by
Chen, Xiaojun
,
Xu, Feng
,
He, Gonghan
in
3-D printers
,
Additive manufacturing
,
Analytical chemistry
2022
3D microfluidic devices have emerged as powerful platforms for analytical chemistry, biomedical sensors, and microscale fluid manipulation. 3D printing technology, owing to its structural fabrication flexibility, has drawn extensive attention in the field of 3D microfluidics fabrication. However, the collapse of suspended structures and residues of sacrificial materials greatly restrict the application of this technology, especially for extremely narrow channel fabrication. In this paper, a 3D printing strategy named nanofiber self-consistent additive manufacturing (NSCAM) is proposed for integrated 3D microfluidic chip fabrication with porous nanofibers as supporting structures, which avoids the sacrificial layer release process. In the NSCAM process, electrospinning and electrohydrodynamic jet (E-jet) writing are alternately employed. The porous polyimide nanofiber mats formed by electrospinning are ingeniously applied as both supporting structures for the suspended layer and percolating media for liquid flow, while the polydimethylsiloxane E-jet writing ink printed on the nanofiber mats (named construction fluid in this paper) controllably permeates through the porous mats. After curing, the resultant construction fluid–nanofiber composites are formed as 3D channel walls. As a proof of concept, a microfluidic pressure-gain valve, which contains typical features of narrow channels and movable membranes, was fabricated, and the printed valve was totally closed under a control pressure of 45 kPa with a fast dynamic response of 52.6 ms, indicating the feasibility of NSCAM. Therefore, we believe NSCAM is a promising technique for manufacturing microdevices that include movable membrane cavities, pillar cavities, and porous scaffolds, showing broad applications in 3D microfluidics, soft robot drivers or sensors, and organ-on-a-chip systems.
Journal Article
Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
by
Yang, Jianhui
,
Jiang, Yuqing
,
Ou, Lu
in
Biomedical and Life Sciences
,
Biomedical Engineering and Bioengineering
,
Cameras
2025
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the Lucas-Kanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION:
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
Journal Article
Hot-Pressed Super-Elastic Graphene Aerogel with Bidirectional Thermal Conduction Properties as Thermal Interface Materials
2023
Traditional graphene-based films normally possess high thermal conductivity (TC) only along a single direction, which is not suitable for thermal interface materials (TIMs). Here, a graphene film with excellent bidirectional TC and mechanical properties was prepared by hot-pressing super-elastic graphene aerogel (SEGA). Thermal annealing at 1800 °C improves the further restacking of graphene sheets, bringing high structure stability to SEGA for enduring the hot-pressing process. The junctions and nodes between the graphene layers in the hot-pressed SEGA (HPSEGA) film provide bidirectional heat transport paths. The in-plane TC and through-plane TC of HPSEGA film with a thickness of 101 μm reach 740 Wm−1K−1 and 42.5 Wm−1K−1, respectively. In addition, HPSEGA film with higher thickness still maintains excellent thermal transport properties due to the interconnected structure reducing the effect of the defects. The infrared thermal images visually manifest the excellent thermal-transfer capability and thermal-dissipation efficiency of the HPSEGA films, indicating the great potential as advanced bidirectional TIMs.
Journal Article