Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
722 result(s) for "Chen, Weijian"
Sort by:
Exceptional points enhance sensing in an optical microcavity
Tuning optical microcavities to exceptional points enhances their ability to sense nanoscale objects, owing to the topological features of exceptional points. Exceptional points, exceptional optics Recent insights into open (non-Hermitian) physical systems have led to a new range of optical systems in which, counter-intuitively, loss is introduced. By careful tuning of loss and gain, certain degeneracies called 'exceptional points' emerge, which have intriguing properties that can be harnessed, for example, in new types of lasers, one-way optical waveguides and topological effects. Two papers in this issue demonstrate the high sensitivity of such non-Hermitian degeneracies to external perturbations, which can be used for precision sensing and detection. Weijian Chen et al . report sensing of nanoparticles with exceptional points generated in a silicon dioxide micro-toroid resonator. Hossein Hodaei et al . generated a higher-order exceptional point by coupling three micro-rings made from a semiconductor laser material. This third-order exceptional point has an even higher, cube-root (rather than square-root) dependence on perturbations. The two papers together provide a new route to ultraprecise chip-based sensing systems. Sensors play an important part in many aspects of daily life such as infrared sensors in home security systems, particle sensors for environmental monitoring and motion sensors in mobile phones. High-quality optical microcavities are prime candidates for sensing applications because of their ability to enhance light–matter interactions in a very confined volume. Examples of such devices include mechanical transducers 1 , magnetometers 2 , single-particle absorption spectrometers 3 , and microcavity sensors for sizing single particles 4 and detecting nanometre-scale objects such as single nanoparticles and atomic ions 5 , 6 , 7 . Traditionally, a very small perturbation near an optical microcavity introduces either a change in the linewidth or a frequency shift or splitting of a resonance that is proportional to the strength of the perturbation. Here we demonstrate an alternative sensing scheme, by which the sensitivity of microcavities can be enhanced when operated at non-Hermitian spectral degeneracies known as exceptional points 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 . In our experiments, we use two nanoscale scatterers to tune a whispering-gallery-mode micro-toroid cavity, in which light propagates along a concave surface by continuous total internal reflection, in a precise and controlled manner to exceptional points 12 , 13 . A target nanoscale object that subsequently enters the evanescent field of the cavity perturbs the system from its exceptional point, leading to frequency splitting. Owing to the complex-square-root topology near an exceptional point, this frequency splitting scales as the square root of the perturbation strength and is therefore larger (for sufficiently small perturbations) than the splitting observed in traditional non-exceptional-point sensing schemes. Our demonstration of exceptional-point-enhanced sensitivity paves the way for sensors with unprecedented sensitivity.
Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module
Perovskite solar cells (PSCs) have reached an impressive efficiency over 23%. One of its promising characteristics is the low-cost solution printability, especially for flexible solar cells. However, printing large area uniform electron transport layers on rough and soft plastic substrates without hysteresis is still a great challenge. Herein, we demonstrate slot-die printed high quality tin oxide films for high efficiency flexible PSCs. The inherent hysteresis induced by the tin oxide layer is suppressed using a universal potassium interfacial passivation strategy regardless of fabricating methods. Results show that the potassium cations, not the anions, facilitate the growth of perovskite grains, passivate the interface, and contribute to the enhanced efficiency and stability. The small size flexible PSCs achieve a high efficiency of 17.18% and large size (5 × 6 cm 2 ) flexible modules obtain an efficiency over 15%. This passivation strategy has shown great promise for pursuing high performance large area flexible PSCs. Uniformity and hysteresis are long lasting problems for flexible perovskite solar modules. Here Bu et al. develop a universal potassium passivation strategy to improve the quality of slot-die printed tin oxide electron transport layers and demonstrate highly efficient and hysteresis-free flexible devices.
Chiral modes and directional lasing at exceptional points
Controlling the emission and the flow of light in micro- and nanostructures is crucial for on-chip information processing. Here we show how to impose a strong chirality and a switchable direction of light propagation in an optical system by steering it to an exceptional point (EP)—a degeneracy universally occurring in all open physical systems when two eigenvalues and the corresponding eigenstates coalesce. In our experiments with a fiber-coupled whispering-gallery-mode (WGM) resonator, we dynamically control the chirality of resonator modes and the emission direction of a WGM microlaser in the vicinity of an EP: Away from the EPs, the resonator modes are nonchiral and laser emission is bidirectional. As the system approaches an EP, the modes become chiral and allow unidirectional emission such that by transiting from one EP to another one the direction of emission can be completely reversed. Our results exemplify a very counterintuitive feature of non-Hermitian physics that paves the way to chiral photonics on a chip.
Robust Beamfocusing for Secure NFC with Imperfect CSI
In this paper, we consider the issue of the physical layer security (PLS) problem between two nodes, i.e., transmitter (Alice) and receiver (Bob), in the presence of an eavesdropper (Eve) in a near-field communication (NFC) system. Notably, massive multiple-input multiple-output (MIMO) arrays significantly increase array aperture, thereby rendering the eavesdroppers more inclined to lurk near the transmission end. This situation necessitates using near-field channel models to more accurately describe channel characteristics. We consider two schemes with imperfect channel estimation information (CSI). The first scheme involves a conventional multiple-input multiple-output multiple-antenna eavesdropper (MIMOME) setup, where Alice simultaneously transmits information signal and artificial noise (AN). In the second scheme, Bob operates in a full-duplex (FD) mode, with Alice transmitting information signal while Bob emits AN. We then jointly design beamforming and AN vectors to degrade the reception signal quality at Eve, based on the signal-to-interference-plus-noise ratio (SINR) of each node. To tackle the power minimization problem, we propose an iterative algorithm that includes an additional constraint to ensure adherence to specified quality-of-service (QoS) metrics. Additionally, we decompose the robust optimization problem of the two schemes into two sub-problems, with one that can be solved using generalized Rayleigh quotient methods and the other that can be addressed through semi-definite programming (SDP). Finally, our simulation results confirm the viability of the proposed approach and demonstrate the effectiveness of the protection zone for NFC systems operating with CSI.
Research Progress of Perovskite-Based Bifunctional Oxygen Electrocatalyst in Alkaline Conditions
In light of the depletion of conventional energy sources, it is imperative to conduct research and development on sustainable alternative energy sources. Currently, electrochemical energy storage and conversion technologies such as fuel cells and metal-air batteries rely heavily on precious metal catalysts like Pt/C and IrO2, which hinders their sustainable commercial development. Therefore, researchers have devoted significant attention to non-precious metal-based catalysts that exhibit high efficiency, low cost, and environmental friendliness. Among them, perovskite oxides possess low-cost and abundant reserves, as well as flexible oxidation valence states and a multi-defect surface. Due to their advantageous structural characteristics and easily adjustable physicochemical properties, extensive research has been conducted on perovskite-based oxides. However, these materials also exhibit drawbacks such as poor intrinsic activity, limited specific surface area, and relatively low apparent catalytic activity compared to precious metal catalysts. To address these limitations, current research is focused on enhancing the physicochemical properties of perovskite-based oxides. The catalytic activity and stability of perovskite-based oxides in Oxygen Reduction Reaction/Oxygen Evolution Reaction (ORR/OER) can be enhanced using crystallographic structure tuning, cationic regulation, anionic regulation, and nano-processing. Furthermore, extensive research has been conducted on the composite processing of perovskite oxides with other materials, which has demonstrated enhanced catalytic performance. Based on these different ORR/OER modification strategies, the future challenges of perovskite-based bifunctional oxygen electrocatalysts are discussed alongside their development prospects.
Photophysics of 2D Organic–Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges
2D organic–inorganic hybrid Ruddlesden–Popper perovskites (RPPs) have recently attracted increasing attention due to their excellent environmental stability, high degree of electronic tunability, and natural multiquantum‐well structures. Although there is a rapid development of photoelectronic applications in solar cells, photodetectors, light emitting diodes (LEDs), and lasers based on 2D RPPs, the state‐of‐the‐art performance is far inferior to that of the existing devices because of the limited understanding on fundamental physics, especially special photophysics in carrier dynamics, excitonic fine structures, excitonic quasiparticles, and spin‐related effect. Thus, there is still plenty of room to improve the performances of photoelectronic devices based on 2D RPPs by enhancing knowledge on fundamental photophysics. This review highlights the special photophysics of 2D RPPs that is fundamentally different from the conventional 3D congeners. It also provides the most recent progress, debates, challenges, prospects, and in‐depth understanding of photophysics in 2D perovskites, which is significant for not only boosting performance of solar cells, LEDs, photodetectors, but also future development of applications in lasers, spintronics, quantum information, and integrated photonic chips. This review highlights the special photophysics of 2D perovskites that is fundamentally different from the conventional 3D congeners, which is significant for not only boosting performance of solar cells, light emitting diodes, photodetectors, but also future development of applications in lasers, spintronics, quantum information, and integrated photonic chips.
Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping
The Internet of Things (IoT)1,2 employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring3, health care monitoring4, smart cities5, and precision agriculture. A wireless sensor can collect, analyze, and transmit measurements of its environment1,2. Currently, wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances. Being immune to the electromagnetic interference, optical sensors provide a significant advantage in harsh environments6. Furthermore, by introducing optical resonance to enhance light–matter interactions, optical sensors based on resonators exhibit small footprints, extreme sensitivity, and versatile functionalities7,8, which can significantly enhance the capability and flexibility of wireless sensors. Here we provide the first demonstration of a wireless photonic sensor node based on a whispering-gallery-mode (WGM) optical resonator, in which light propagates along the circular rim of such a structure like a sphere, a disk, or a toroid by continuous total internal reflection. The sensor node is controlled via a customized iOS app. Its performance was studied in two practical scenarios: (1) real-time measurement of the air temperature over 12 h and (2) aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone. Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT.
Experimental Study of Airworthiness Compliance Verification of High-Temperature Environment in Aircraft Cockpit
The aim of this study was to assess the applicability of the Mechanical Systems Coordination Working Group’s (MSCWG) findings, based on FAR 25.831(g), to Chinese pilots through a human physiological experiment conducted in a high-temperature environment to investigate the effects of core temperature. Methods: A controlled experiment was carried out in a high-temperature environment simulation room involving a cohort of healthy males aged 18–50 years. Wireless physiological monitoring equipment and a neurobehavioral assessment system were utilized to track changes in physiological parameters and neurobehavioral responses at varying core temperatures and time intervals. Results: There was a significant increase in human core body temperature, skin temperature, and heart rate as the ambient temperature rose, all remaining within acceptable physiological limits. Although arterial and venous oxygen saturation decreased with increasing ambient temperature, the difference was not statistically significant. The neurobehavioral abilities of the subjects did not exhibit notable changes across different core temperature–time conditions. Conclusions: The core temperature limits set forth by the MSCWG have been shown to have a safe impact on the physiological and behavioral aspects of Chinese pilots, which can be used as an equivalent safety regulation for airworthiness compliance validation under CCAR 25.831(g). Limitation: The present study was constrained to a male sample, it did not thoroughly explore female responses, and it had a small sample size (10 per group). The latter two factors may have affected the statistical validity and generalizability of the results.
Fully integrated topological electronics
Topological insulators (TIs) have attracted significant attention in photonics and acoustics due to their unique physical properties and promising applications. Electronics has recently emerged as an exciting arena to study various topological phenomena because of its advantages in building complex topological structures. Here, we explore TIs on an integrated circuit (IC) platform with a standard complementary metal-oxide-semiconductor technology. Based on the Su–Schrieffer–Heeger model, we design a fully integrated topological circuit chain using multiple capacitively-coupled inductor–capacitor resonators. We perform comprehensive post-layout simulations on its physical layout to observe and evaluate the salient topological features. Our results demonstrate the existence of the topological edge state and the remarkable robustness of the edge state against various defects. Our work shows the feasibility and promise of studying TIs with IC technology, paving the way for future explorations of large-scale topological electronics on the scalable IC platform.
Anti-artifacts techniques for neural recording front-ends in closed-loop brain-machine interface ICs
In recent years, thanks to the development of integrated circuits, clinical medicine has witnessed significant advancements, enabling more efficient and intelligent treatment approaches. Particularly in the field of neuromedical, the utilization of brain-machine interfaces (BMI) has revolutionized the treatment of neurological diseases such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. The BMI acquires neural signals via recording circuits and analyze them to regulate neural stimulator circuits for effective neurological treatment. However, traditional BMI designs, which are often isolated, have given way to closed-loop brain-machine interfaces (CL-BMI) as a contemporary development trend. CL-BMI offers increased integration and accelerated response speed, marking a significant leap forward in neuromedicine. Nonetheless, this advancement comes with its challenges, notably the stimulation artifacts (SA) problem inherent to the structural characteristics of CL-BMI, which poses significant challenges on the neural recording front-ends (NRFE) site. This paper aims to provide a comprehensive overview of technologies addressing artifacts in the NRFE site within CL-BMI. Topics covered will include: (1) understanding and assessing artifacts; (2) exploring the impact of artifacts on traditional neural recording front-ends; (3) reviewing recent technological advancements aimed at addressing artifact-related issues; (4) summarizing and classifying the aforementioned technologies, along with an analysis of future trends.