Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
840 result(s) for "Chen, Yahui"
Sort by:
Can access to urban networks promote urban development? Evidence from the Yangtze River Delta region of China
The regional networking strategy is widely implemented in China as a normative policy aimed at fostering cohesion and enhancing competitiveness. However, the empirical basis for this strategy remains relatively weak due to limitations in measurement methods and data availability. This paper establishes the urban networks by the enterprise investment data, and then accurately measures the network’s external effects of each city by the method of MGWR model. The results show that: (1) Regional networking plays a significant role in urban development, although it is not the dominant factor. (2) The benefits of network connections may vary depending on the location and level of cities. (3) The major cities assume a pivotal role in the urban network. Based upon the aforementioned research conclusions, this paper presents strategic measures to enhance the network’s external impacts, aiming to offer insights for other regions in formulating regional development strategies and establishing regional urban networks.
Responses and sensitivities of maize phenology to climate change from 1971 to 2020 in Henan Province, China
Climate change affects many aspects of the physiological and biochemical processes of growing maize and ultimately its yield. A comprehensive climate suitability model is proposed that quantifies the effects of temperature, precipitation, solar radiation, and wind in different phenological stages of maize. It is calibrated using weather and yield data from China’s Henan Province. The comprehensive suitability model showed the capability of correctly hindcasting observed temporal and spatial changes in maize phenology in response to climatic factors. The predicted yield based on the suitability model can well match the recorded field yield very well from 1971–2020. The results of correlation showed that the yields are more closely related to multi-weather factors, temperature and precipitation than to solar radiation and wind. The sensitivity analysis illustrates that temperature and precipitation are the dominant weather factors affecting yield changes based on a direct differentiation method. The comprehensive suitability model can provide a scientific support and analysis tool for predicting grain production considering climate changes.
Transcriptome analysis of Tamarix ramosissima leaves in response to NaCl stress
Halophyte Tamarix ramosissima . Lcdcb ( T . ramosissima ) are known as the representative of Tamarix plants that are widely planted in salinized soil. However, molecular mechanisms towards salt tolerance and adaptation are largely rare. In this study, we carried out RNA-sequence and transcriptome analysis of T . ramosissima in response to NaCl stress, screened differentially expressed genes (DEGs) and further verified by qRT-PCR. Results showed that 105702 unigenes were spliced from the raw data of transcriptome sequencing, where 54238 unigenes were retrieved from KEGG, KOG, NR, and SwissProt. After 48 hours of NaCl treatment, the expression levels of 6374 genes were increased, and 5380 genes were decreased in leaves. After 168 hours, the expression levels of 3837 genes were up-regulated and 7808 genes were down-regulated. In particular, 8 transcription factors annotated to the KEGG Pathway were obtained, involving the WRKY and bZIP transcription family. In addition, KEGG pathway annotation showed that expression of 39 genes involved in ROS scavenging mechanisms were significantly changed, in which 21 genes were up-regulated and 18 genes were down-regulated after 48 hours as well as 15 genes were up-regulated and 24 genes were down-regulated after 168h. Simultaneously, the enzyme activities of SOD and POD were significantly enhanced under NaCl treatment, but the enzyme activity of CAT was not significantly enhanced. Moreover, WRKY, MYB and bZIP may participate in the process of salt resistance in T . ramosissima . This study provides gene resources and a theoretical basis for further molecular mechanisms of salt tolerance in T . ramosissima .
“Iron triangle” of regulating the uterine microecology: Endometrial microbiota, immunity and endometrium
The uterus is the core place for breeding new life. The balance and imbalance of uterine microecology can directly affect or even dominate the female reproductive health. Emerging data demonstrate that endometrial microbiota, endometrium and immunity play an irreplaceable role in regulating uterine microecology, forming a dynamic iron triangle relationship. Up to nowadays, it remains unclear how the three factors affect and interact with each other, which is also a frontier topic in the emerging field of reproductive tract microecology. From this new perspective, we aim to clarify the relationship and mechanism of the interaction of these three factors, especially their pairwise interactions. Finally, the limitations and future perspectives of the current studies are summarized. In general, these three factors have a dynamic relationship of mutual dependence, promotion and restriction under the physiological or pathological conditions of uterus, among which the regulatory mechanism of microbiota and immunity plays a role of bridge. These findings can provide new insights and measures for the regulation of uterine microecology, the prevention and treatment of endometrial diseases, and the further multi-disciplinary integration between microbiology, immunology and reproductive medicine.
Solar overall water-splitting by a spin-hybrid all-organic semiconductor
Direct solar-to-hydrogen conversion from pure water using all-organic heterogeneous catalysts remains elusive. The challenges are twofold: (i) full-band low-frequent photons in the solar spectrum cannot be harnessed into a unified S 1 excited state for water-splitting based on the common Kasha-allowed S 0  →  S 1 excitation; (ii) the H +  → H 2 evolution suffers the high overpotential on pristine organic surfaces. Here, we report an organic molecular crystal nanobelt through the self-assembly of spin-one open-shell perylene diimide diradical anions (:PDI 2- ) and their tautomeric spin-zero closed-shell quinoid isomers (PDI 2- ). The self-assembled :PDI 2- /PDI 2- crystal nanobelt alters the spin-dependent excitation evolution, leading to spin-allowed S 0 S 1  →  1 (TT)  →  T 1  +  T 1 singlet fission under visible-light (420 nm~700 nm) and a spin-forbidden S 0  →  T 1 transition under near-infrared (700 nm~1100 nm) within spin-hybrid chromophores. With a triplet-triplet annihilation upconversion, a newly formed S 1 excited state on the diradical-quinoid hybrid induces the H + reduction through a favorable hydrophilic diradical-mediated electron transfer, which enables simultaneous H 2 and O 2 production from pure water with an average apparent quantum yield over 1.5% under the visible to near-infrared solar spectrum. Achieving direct solar-to-hydrogen conversion from pure water using solely organic heterogeneous catalysts is still challenging. Here the authors report an all-organic semiconductor catalyst system for overall water splitting under visible to near-infrared light via triplet-triplet annihilation up conversion based on spin coupling.
The roles of cell wall polysaccharides in response to waterlogging stress in Brassica napus L. root
Background Brassica napus L. ( B. napus ) is susceptible to waterlogging stress during different cultivation periods. Therefore, it is crucial to enhance the resistance to waterlogging stress to achieve a high and stable yield of B. napus . Results Here we observed significant differences in the responses of two B. napus varieties in root under waterlogging stress. The sensitive variety (23651) exhibited a more pronounced and rapid reduction in cell wall thickness and root integrity compared with the tolerant variety (Santana) under waterlogging stress. By module clustering analysis based on transcriptome data, we identified that cell wall polysaccharide metabolism responded to waterlogging stress in root. It was found that pectin content was significantly reduced in the sensitive variety compared with the tolerant variety. Furthermore, transcriptome analysis revealed that the expression of two homologous genes encoding polygalacturonase-inhibiting protein 2 (PGIP2), involved in polysaccharide metabolic pathways, was highly upregulated in root of the tolerant variety under waterlogging stress. BnaPGIP2s probably confer waterlogging resistance by inhibiting the activity of polygalacturonases (PGs), which in turn reduces the degradation of the pectin backbone polygalacturonic acid. Conclusions Our findings demonstrate that cell wall polysaccharides in root plays a vital role in response to the waterlogging stress and provide a theoretical foundation for breeding waterlogging resistance in B. napus varieties.
Analysis of Influencing Factors of Thermal Coal Price
As the world’s largest coal consumer, China’s coal consumption in 2021 was 2934.4 million tons of standard coal. Thermal coal occupies an important position in the coal market and industry system, as an important raw material in the power industry, steel industry and other industries. The price of thermal coal in 2021 was at its highest level in a decade, and reached a historical level of about 2587.5 yuan per ton in October 2021. In the same month, the government intervened in the thermal coal price, which fell 51.9% by the end of the year under the influence of the policy. In previous studies, there has been little research on thermal coal and the impact of the variable “policy” on the thermal coal price. Thus, this paper analyzed the factors that affect the price fluctuation of thermal coal, and the impact of economic policy uncertainty on the thermal coal price. The cointegration test and forecast-error variance decomposition (FEVD) are adopted in this study. Our results show that the impact of policy uncertainty on the thermal coal price gradually increases over time, but the impact of policy uncertainty on price is negative and not as strong as expected. On the contrary, inventory and other energy prices have a greater positive impact on the price of thermal coal. The results of this study are of significance for the prediction of thermal coal prices in the future.
Efficacy and safety of postoperative adjuvant HAIC with FOLFOX combining PD-1 inhibitors in HCC patients with microvascular invasion: a propensity score matching analysis
Purpose To evaluate the efficacy and safety of postoperative adjuvant hepatic arterial infusion chemotherapy (PA-HAIC) plus programmed death-1 (PD-1) inhibitors versus PA-HAIC alone for hepatocellular carcinoma (HCC) patients with microvascular invasion (MVI). Methods This retrospective study included HCC patients with MVI who were treated with either PA-HAIC or PA-HAIC plus PD-1 inhibitors between February 2021 and February 2024. The differences in baseline characteristics, disease-free survival (DFS), and overall survival (OS) were compared between the two groups before and after propensity score-matching (PSM). The treatment-related adverse events (TRAEs) were compared among the two groups after PSM. Cox regression analysis was utilized to determine factors affecting DFS and OS. Results A total of 102 patients were included in the study: 65 in the PA-HAIC group and 37 in the PA-HAIC plus PD-1 group. PSM analysis generated 32 matched pairs of patients in the two groups. The HCC patients in the PA-HAIC plus PD-1 group experienced significantly better DFS compared to those in the PA-HAIC group alone (HR: 0.412; P  = 0.031). However, there was no significant difference in OS between the two groups ( P  = 0.124). Multivariate analysis identified the treatment option (PA-HAIC vs. PA-HAIC + PD-1) as an independent predictive factor for DFS of the patients. Furthermore, the results indicated no statistically significant difference in the incidence of TRAEs between the two groups ( P  < 0.05). Conclusion In comparison with PA-HAIC alone, PA-HAIC combined with PD-1 inhibitors could improve the DFS benefits with acceptable safety profiles in HCC patients with MVI.
Analysis of the main antioxidant enzymes in the roots of Tamarix ramosissima under NaCl stress by applying exogenous potassium (K+)
Salinization affects more than 25% of the world's arable land, and Ledeb ( ), the representative of plants, is widely grown in salinized soil. In contrast, less is known about the mechanism of potassium's antioxidative enzyme activity in preventing NaCl stress damage to plants. This study examined changes in root growth for at 0h, 48h, and 168h, performed antioxidant enzyme activity assays, transcriptome sequencing, and non-targeted metabolite analysis to understand changes in their roots as well as changes in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Quantitative real-time PCR (qRT-PCR) was used to identify differentially expressed genes (DEGs) and differential metabolites associated with antioxidant enzyme activities. As the time increased, the results showed that compared with the 200 Mm NaCl group, the root growth of the 200 mM NaCl + 10 mM KCl group increased, the activities of SOD, POD and CAT increased the most, but the contents of hydrogen peroxide (H2O2) and Malondialdehyde (MDA) increased less. Meanwhile, 58 DEGs related to SOD, POD and CAT activities were changed during the application of exogenous K+ for 48h and 168h in . Based on association analysis of transcriptomic and metabolomic data, we found coniferyl alcohol, which can act as a substrate to label catalytic POD. It is worth noting that and , as POD-related genes, have positively regulated the downstream of coniferyl alcohol, and they have a significant correlation with coniferyl alcohol. In summary, 48h and 168h of exogenous K applied to the roots of under NaCl stress can resist NaCl stress by scavenging the reactive oxygen species (ROS) generated by high salt stress by enhancing the mechanism of antioxidant enzyme activity, relieving NaCl toxicity and maintaining growth. This study provides genetic resources and a scientific theoretical basis for further breeding of salt-tolerant plants and the molecular mechanism of K alleviating NaCl toxicity.
Rapid Detection of Clenbuterol Residues in Pork Using Enhanced Raman Spectroscopy
Clenbuterol (CB) is a synthetic β-receptor agonist which can be used to improve carcass leanness in swine, but its residues in pork also pose health risks. In this report, surface-enhanced Raman scattering (SERS) technology was used to achieve rapid detection and identification of clenbuterol hydrochloride (CB) residues. First, the effects of several different organic solvents on the extraction efficiency were compared, and it was found that clenbuterol in pork had a better enhancement effect using ethyl acetate as an extraction agent. Then, SERS signals of clenbuterol in different solvents were compared, and it was found that clenbuterol had a better enhancement effect in an aqueous solution. Therefore, water was chosen as the solvent for clenbuterol detection. Next, enhancement effect was compared using different concentration of sodium chloride solution as the aggregating compound. Finally, pork samples with different clenbuterol content (1, 3, 5, 7, 9, and 10 µg/g) were prepared for quantitative analysis. The SERS spectra of samples were collected with 0.5 mol/L of NaCl solution as aggregating compound and gold colloid as an enhanced substrate. Multiple scattering correction (MSC) and automatic Whittaker filter (AWF) were used for preprocessing, and the fluorescence background contained in the original Raman spectra was removed. A unary linear regression model was established between SERS intensity at 1472 cm-1 and clenbuterol content in pork samples. The model had a better linear relationship with a correlation coefficient R2 of 0.99 and a root mean square error of 0.263 µg/g. This method can be used for rapid screening of pork containing clenbuterol in the market.