Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
250
result(s) for
"Chen, Yushi"
Sort by:
Spatial-Spectral Transformer for Hyperspectral Image Classification
by
Lin, Zhouhan
,
He, Xin
,
Chen, Yushi
in
classification
,
convolutional neural network (CNN)
,
data collection
2021
Recently, a great many deep convolutional neural network (CNN)-based methods have been proposed for hyperspectral image (HSI) classification. Although the proposed CNN-based methods have the advantages of spatial feature extraction, they are difficult to handle the sequential data with and CNNs are not good at modeling the long-range dependencies. However, the spectra of HSI are a kind of sequential data, and HSI usually contains hundreds of bands. Therefore, it is difficult for CNNs to handle HSI processing well. On the other hand, the Transformer model, which is based on an attention mechanism, has proved its advantages in processing sequential data. To address the issue of capturing relationships of sequential spectra in HSI in a long distance, in this study, Transformer is investigated for HSI classification. Specifically, in this study, a new classification framework titled spatial-spectral Transformer (SST) is proposed for HSI classification. In the proposed SST, a well-designed CNN is used to extract the spatial features, and a modified Transformer (a Transformer with dense connection, i.e., DenseTransformer) is proposed to capture sequential spectra relationships, and multilayer perceptron is used to finish the final classification task. Furthermore, dynamic feature augmentation, which aims to alleviate the overfitting problem and therefore generalize the model well, is proposed and added to the SST (SST-FA). In addition, to address the issue of limited training samples in HSI classification, transfer learning is combined with SST, and another classification framework titled transferring-SST (T-SST) is proposed. At last, to mitigate the overfitting problem and improve the classification accuracy, label smoothing is introduced for the T-SST-based classification framework (T-SST-L). The proposed SST, SST-FA, T-SST, and T-SST-L are tested on three widely used hyperspectral datasets. The obtained results reveal that the proposed models provide competitive results compared to the state-of-the-art methods, which shows that the concept of Transformer opens a new window for HSI classification.
Journal Article
Transformer with Transfer CNN for Remote-Sensing-Image Object Detection
2022
Object detection in remote-sensing images (RSIs) is always a vibrant research topic in the remote-sensing community. Recently, deep-convolutional-neural-network (CNN)-based methods, including region-CNN-based and You-Only-Look-Once-based methods, have become the de-facto standard for RSI object detection. CNNs are good at local feature extraction but they have limitations in capturing global features. However, the attention-based transformer can obtain the relationships of RSI at a long distance. Therefore, the Transformer for Remote-Sensing Object detection (TRD) is investigated in this study. Specifically, the proposed TRD is a combination of a CNN and a multiple-layer Transformer with encoders and decoders. To detect objects from RSIs, a modified Transformer is designed to aggregate features of global spatial positions on multiple scales and model the interactions between pairwise instances. Then, due to the fact that the source data set (e.g., ImageNet) and the target data set (i.e., RSI data set) are quite different, to reduce the difference between the data sets, the TRD with the transferring CNN (T-TRD) based on the attention mechanism is proposed to adjust the pre-trained model for better RSI object detection. Because the training of the Transformer always needs abundant, well-annotated training samples, and the number of training samples for RSI object detection is usually limited, in order to avoid overfitting, data augmentation is combined with a Transformer to improve the detection performance of RSI. The proposed T-TRD with data augmentation (T-TRD-DA) is tested on the two widely-used data sets (i.e., NWPU VHR-10 and DIOR) and the experimental results reveal that the proposed models provide competitive results (i.e., centuple mean average precision of 87.9 and 66.8 with at most 5.9 and 2.4 higher than the comparison methods on the NWPU VHR-10 and the DIOR data sets, respectively) compared to the competitive benchmark methods, which shows that the Transformer-based method opens a new window for RSI object detection.
Journal Article
Spectral-Spatial Mamba for Hyperspectral Image Classification
by
Huang, Lingbo
,
Chen, Yushi
,
He, Xin
in
Artificial intelligence
,
Basic converters
,
Classification
2024
Recently, transformer has gradually attracted interest for its excellence in modeling the long-range dependencies of spatial-spectral features in HSI. However, transformer has the problem of the quadratic computational complexity due to the self-attention mechanism, which is heavier than other models and thus has limited adoption in HSI processing. Fortunately, the recently emerging state space model-based Mamba shows great computational efficiency while achieving the modeling power of transformers. Therefore, in this paper, we first proposed spectral-spatial Mamba (SS-Mamba) for HSI classification. Specifically, SS-Mamba mainly includes a spectral-spatial token generation module and several stacked spectral-spatial Mamba blocks. Firstly, the token generation module converts any given HSI cube to spatial and spectral tokens as sequences. And then these tokens are sent to stacked spectral-spatial mamba blocks (SS-MB). Each SS-MB includes two basic mamba blocks and a spectral-spatial feature enhancement module. The spatial and spectral tokens are processed separately by the two basic mamba blocks, correspondingly. Moreover, the feature enhancement module modulates spatial and spectral tokens using HSI sample’s center region information. Therefore, the spectral and spatial tokens cooperate with each other and achieve information fusion within each block. The experimental results conducted on widely used HSI datasets reveal that the proposed SS-Mamba requires less processing time compared with transformer. The Mamba-based method thus opens a new window for HSI classification.
Journal Article
Autophagy in muscle regeneration: potential therapies for myopathies
2022
Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Its biological functions include metabolic stress adaptation, stem cell differentiation, immunomodulation and diseases regulation, and so on. Current researches have proved that autophagy dysfunction may contribute to the pathogenesis of some myopathies through impairment of myofibres regeneration. Studies of autophagy inhibition also indicate the importance of autophagy in muscle regeneration, while activation of autophagy can restore muscle function in some myopathies. In this review, we aim to report the mechanisms of action of autophagy on muscle regeneration to provide relevant references for the treatment of regenerating defective myopathies by regulating autophagy. Results have shown that one key mechanism of autophagy regulating the muscle regeneration is to affect the differentiation fate of muscle stem cells (MuSCs), including quiescence maintenance, activation and differentiation. The roles of autophagy (organelle/protein degradation, energy facilitation, and/or other) vary at different myogenic stages of the repair process. When the muscle is in homeostasis, basal autophagy can maintain the quiescence state and stemness of MuSCs by renewing organelle and protein. After injury, the increased autophagy flux contributes to meet biological energy demand of MuSCs during activation and proliferation. By mitochondrial remodelling, autophagy during differentiation can promote the metabolic transformation and balance mitochondrial‐mediated apoptosis signals in myoblasts. Autophagy in mature myofibres is also essential for the degradation of necrotic myofibres, and may affect the dynamics of MuSCs by affecting the secretion spectrum of myofibres or the recruitment of supporting cells. Except for myogenic cells, autophagy also plays an important role in regulating the function of non‐myogenic cells in the muscle microenvironment, which is also essential for successful muscle recovery. Autophagy can regulate the immune microenvironment during muscle regeneration through the recruitment and polarization of macrophages, while autophagy in endothelial cells can regulate muscle regeneration in an angiogenic or angiogenesis‐independent manner. Drug or nutrition targeted autophagy has been preliminarily proved to restore muscle function in myopathies by promoting muscle regeneration, and further understanding the role and mechanism of autophagy in various cell types during muscle regeneration will enable more effective combinatorial therapeutic strategies.
Journal Article
Modifications of the Multi-Layer Perceptron for Hyperspectral Image Classification
2021
Recently, many convolutional neural network (CNN)-based methods have been proposed to tackle the classification task of hyperspectral images (HSI). In fact, CNN has become the de-facto standard for HSI classification. It seems that the traditional neural networks such as multi-layer perceptron (MLP) are not competitive for HSI classification. However, in this study, we try to prove that the MLP can achieve good classification performance of HSI if it is properly designed and improved. The proposed Modified-MLP for HSI classification contains two special parts: spectral–spatial feature mapping and spectral–spatial information mixing. Specifically, for spectral–spatial feature mapping, each input sample of HSI is divided into a sequence of 3D patches with fixed length and then a linear layer is used to map the 3D patches to spectral–spatial features. For spectral–spatial information mixing, all the spectral–spatial features within a single sample are feed into the solely MLP architecture to model the spectral–spatial information across patches for following HSI classification. Furthermore, to obtain the abundant spectral–spatial information with different scales, Multiscale-MLP is proposed to aggregate neighboring patches with multiscale shapes for acquiring abundant spectral–spatial information. In addition, the Soft-MLP is proposed to further enhance the classification performance by applying soft split operation, which flexibly capture the global relations of patches at different positions in the input HSI sample. Finally, label smoothing is introduced to mitigate the overfitting problem in the Soft-MLP (Soft-MLP-L), which greatly improves the classification performance of MLP-based method. The proposed Modified-MLP, Multiscale-MLP, Soft-MLP, and Soft-MLP-L are tested on the three widely used hyperspectral datasets. The proposed Soft-MLP-L leads to the highest OA, which outperforms CNN by 5.76%, 2.55%, and 2.5% on the Salinas, Pavia, and Indian Pines datasets, respectively. The obtained results reveal that the proposed models provide competitive results compared to the state-of-the-art methods, which shows that the MLP-based methods are still competitive for HSI classification.
Journal Article
Fast Complex-Valued CNN for Radar Jamming Signal Recognition
by
Zhang, Haoyu
,
Chen, Yushi
,
Wei, Yinsheng
in
Algorithms
,
Artificial neural networks
,
complex-valued network
2021
Jamming is a big threat to the survival of a radar system. Therefore, the recognition of radar jamming signal type is a part of radar countermeasure. Recently, convolutional neural networks (CNNs) have shown their effectiveness in radar signal processing, including jamming signal recognition. However, most of existing CNN methods do not regard radar jamming as a complex value signal. In this study, a complex-valued CNN (CV-CNN) is investigated to fully explore the inherent characteristics of a radar jamming signal, and we find that we can obtain better recognition accuracy using this method compared with a real-valued CNN (RV-CNN). CV-CNNs contain more parameters, which need more inference time. To reduce the parameter redundancy and speed up the recognition time, a fast CV-CNN (F-CV-CNN), which is based on pruning, is proposed for radar jamming signal fast recognition. The experimental results show that the CV-CNN and F-CV-CNN methods obtain good recognition performance in terms of accuracy and speed. The proposed methods open a new window for future research, which shows a huge potential of CV-CNN-based methods for radar signal processing.
Journal Article
Deep Convolutional Capsule Network for Hyperspectral Image Spectral and Spectral-Spatial Classification
by
Ghamisi, Pedram
,
Chen, Yushi
,
Jia, Xiuping
in
Artificial neural networks
,
capsule network
,
Classification
2019
Capsule networks can be considered to be the next era of deep learning and have recently shown their advantages in supervised classification. Instead of using scalar values to represent features, the capsule networks use vectors to represent features, which enriches the feature presentation capability. This paper introduces a deep capsule network for hyperspectral image (HSI) classification to improve the performance of the conventional convolutional neural networks (CNNs). Furthermore, a modification of the capsule network named Conv-Capsule is proposed. Instead of using full connections, local connections and shared transform matrices, which are the core ideas of CNNs, are used in the Conv-Capsule network architecture. In Conv-Capsule, the number of trainable parameters is reduced compared to the original capsule, which potentially mitigates the overfitting issue when the number of available training samples is limited. Specifically, we propose two schemes: (1) A 1D deep capsule network is designed for spectral classification, as a combination of principal component analysis, CNN, and the Conv-Capsule network, and (2) a 3D deep capsule network is designed for spectral-spatial classification, as a combination of extended multi-attribute profiles, CNN, and the Conv-Capsule network. The proposed classifiers are tested on three widely-used hyperspectral data sets. The obtained results reveal that the proposed models provide competitive results compared to the state-of-the-art methods, including kernel support vector machines, CNNs, and recurrent neural network.
Journal Article
Remote Sensing Image Scene Classification via Label Augmentation and Intra-Class Constraint
by
Xie, Hao
,
Ghamisi, Pedram
,
Chen, Yushi
in
Accuracy
,
Artificial neural networks
,
Classification
2021
In recent years, many convolutional neural network (CNN)-based methods have been proposed to address the scene classification tasks of remote sensing images. Since the number of training samples in RS datasets is generally small, data augmentation is often used to expand the training set. It is, however, not appropriate when original data augmentation methods keep the label and change the content of the image at the same time. In this study, label augmentation (LA) is presented to fully utilize the training set by assigning a joint label to each generated image, which considers the label and data augmentation at the same time. Moreover, the output of images obtained by different data augmentation is aggregated in the test process. However, the augmented samples increase the intra-class diversity of the training set, which is a challenge to complete the following classification process. To address the above issue and further improve classification accuracy, Kullback–Leibler divergence (KL) is used to constrain the output distribution of two training samples with the same scene category to generate a consistent output distribution. Extensive experiments were conducted on widely-used UCM, AID and NWPU datasets. The proposed method can surpass the other state-of-the-art methods in terms of classification accuracy. For example, on the challenging NWPU dataset, competitive overall accuracy (i.e., 91.05%) is obtained with a 10% training ratio.
Journal Article
Weakly Supervised Transformer for Radar Jamming Recognition
by
Zhang, Ye
,
Chen, Yushi
,
Zhang, Menglu
in
Accuracy
,
artificial intelligence
,
complementary label
2024
Radar jamming recognition is a key step in electronic countermeasures, and accurate and sufficient labeled samples are essential for supervised learning-based recognition methods. However, in real practice, collected radar jamming samples often have weak labels (i.e., noisy-labeled or unlabeled ones), which degrade recognition performance. Additionally, recognition performance is hindered by limitations in capturing the global features of radar jamming. The Transformer (TR) has advantages in modeling long-range relationships. Therefore, a weakly supervised Transformer is proposed to address the issues of performance degradation under weak supervision. Specifically, complementary label (CL) TR, called RadarCL-TR, is proposed to improve radar jamming recognition accuracy with noisy samples. CL learning and a cleansing module are successively utilized to detect and remove potentially noisy samples. Thus, the adverse influence of noisy samples is mitigated. Additionally, semi-supervised learning (SSL) TR, called RadarSSL-PL-TR, is proposed to boost recognition performance under unlabeled samples via pseudo labels (PLs). Network generalization is improved by training with pseudo-labeling unlabeled samples. Moreover, the RadarSSL-PL-S-TR is proposed to further promote recognition performance, where a selection module identifies reliable pseudo-labeling samples. The experimental results show that the proposed RadarCL-TR and RadarSSL-PL-S-TR outperform comparison methods in recognition accuracy by at least 7.07% and 6.17% with noisy and unlabeled samples, respectively.
Journal Article
Supervised Contrastive Learning-Based Classification for Hyperspectral Image
by
Ghamisi, Pedram
,
Chen, Yushi
,
He, Xin
in
Accuracy
,
Artificial neural networks
,
Classification
2022
Recently, deep learning methods, especially convolutional neural networks (CNNs), have achieved good performance for hyperspectral image (HSI) classification. However, due to limited training samples of HSIs and the high volume of trainable parameters in deep models, training deep CNN-based models is still a challenge. To address this issue, this study investigates contrastive learning (CL) as a pre-training strategy for HSI classification. Specifically, a supervised contrastive learning (SCL) framework, which pre-trains a feature encoder using an arbitrary number of positive and negative samples in a pair-wise optimization perspective, is proposed. Additionally, three techniques for better generalization in the case of limited training samples are explored in the proposed SCL framework. First, a spatial–spectral HSI data augmentation method, which is composed of multiscale and 3D random occlusion, is designed to generate diverse views for each HSI sample. Second, the features of the augmented views are stored in a queue during training, which enriches the positives and negatives in a mini-batch and thus leads to better convergence. Third, a multi-level similarity regularization method (MSR) combined with SCL (SCL–MSR) is proposed to regularize the similarities of the data pairs. After pre-training, a fully connected layer is combined with the pre-trained encoder to form a new network, which is then fine-tuned for final classification. The proposed methods (SCL and SCL–MSR) are evaluated on four widely used hyperspectral datasets: Indian Pines, Pavia University, Houston, and Chikusei. The experiment results show that the proposed SCL-based methods provide competitive classification accuracy compared to the state-of-the-art methods.
Journal Article