Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Cheng, Jieshan"
Sort by:
Ectopic expression of LoSVP, a MADS-domain transcription factor from lily, leads to delayed flowering in transgenic Arabidopsis
Key message A MADS-domain transcription factor LoSVP , which could delay flowering through vernalization pathway, was isolated from lily. MADS-domain transcription factors play important roles in plant growth and development, especially in the transition from vegetative phase to reproductive phase. However, their functions in bulbous flowering plants are largely unknown. In this work, a SHORT VEGETATIVE PHASE (SVP) encoding genes LoSVP from oriental lily was isolated. Bioinformatic analyses demonstrated that LoSVP encodes a type II MADS-box protein containing a conserved MADS-box, as well as a conserved K-box domain. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed ubiquitous expression of LoSVP in various tissues, including petals, stamens, pistils, leaves and scales. Real-time polymerase chain reaction (PCR) analyses demonstrated that LoSVP was predominantly expressed in the early stage of developing flowers. Constitutive expression of LoSVP in Arabidopsis led to significantly delayed flowering of transgenic plants. These results suggest that LoSVP is involved in plant flowering and could be used as a potential candidate gene for the genetic regulation of flowering time in higher plants.
Soil Inorganic Phosphorus Is Closely Associated with pqqC- Gene Abundance and Bacterial Community Richness in Grape Orchards with Different Planting Years
The high application rate and low utilization efficiency of inorganic phosphorus (Pi) fertilizer could lead to significant P accumulation in soil. Soil P cycling is greatly affected by the planting time in perennial fruit yards. However, the mechanism by which soil Pi fractions and pqqC-harboring bacterial communities, and their relationships, are affected by the planting time of fruit vines, remains unclear. Here, the soil Pi fractions, the pqqC-harboring bacterial communities, and their relationships in the grape yards with 0.5, 4, 16 and 22 growth years, designated as Y0.5, Y4, Y16 and Y22, were examined. The results showed that with the increasing growth years, soil organic carbon (SOC) contents and pH values, respectively, increased and decreased. In addition, the contents and percentages of soil labile Pi and moderately labile Pi increased, whereas those of soil stable Pi decreased. In the soils of Y4, Y16 and Y22, the abundance and α-diversity of pqqC decreased compared to the soils of Y0.5. In the soils of Y16, the composition of pqqC-harboring bacterial communities was altered significantly, showing a great difference compared to the soils of Y0.5, Y4 and Y22. At genus level, the relative abundance of pqqC-harboring bacteria was highly correlated with soil P fractions. Further structural equation modeling revealed that the relationships between the abundance and community richness of the pqqC gene and soil Pi transformation were regulated by soil pH. These findings suggest that changes in soil Pi fractions are closely associated with soil pH, pqqC gene abundance, pqqC-harboring bacterial community richness and SOC content in grape orchards with different planting years.
The diversity and structure of diazotrophic communities in the rhizosphere of coastal saline plants is mainly affected by soil physicochemical factors but not host plant species
The diversity and community structure of rhizospheric microbes are largely affected by soil physicochemical properties and plant species. In this work, high throughput sequencing and quantitative real-time PCR targeting nifH gene were used to assess the abundance and diversity of diazotrophic community in the coastal saline soils of Yellow River Delta (YRD). We demonstrated that the copy number of nifH gene encoding the Fe protein subunit of the nitrogenase in the nitrogen fixation process was significantly affected by soil physiochemical factors, and the abundance of diazotrophs in the rhizospheric soil samples collected from different locations was positively related with soil physicochemical properties. Soil salinity ( P =0.003) and moisture ( P =0.003) were significantly co-varied with the OTU-based community composition of diazotrophs. Taxonomic analysis showed that most diazotrophs belonged to the Alphaproteobacteria , Gammaproteobacteria and Deltaproteobacteria . Linear discriminant analysis (LDA) effect size (LEfSe) and canonical correspondence analysis (CCA) showed that diazotrophic community structure significantly varied with soil salinity, moisture, pH and total nitrogen, carbon, sulphur and nitrite (NO 2 – N) content. Our findings provide direct evidence toward the understanding of different effects of soil physicochemical properties and host plant traits such as halophytes types, life span and cotyledon type, on the community composition of diazotrophic populations in the rhizosphere of plants grown in coastal saline soils.
Inheritance of anthocyanins in berries of Vitis vinifera grapes
Inheritance patterns for table grape anthocyanins were investigated on three cross offspring populations during two successive years. Sixteen anthocyanins were detected, and all were monoglucoside derivatives. The proportion of anthocyanins in the maternal parent determined the proportion of anthocyanins in the offspring. But the absolute content of the maternal parent had no significant effect on progenies. Peonidin 3-O-glucoside and malvidin 3-O-glucoside were the most abundant anthocyanins, not only in the maternal parent but also in the progenies. The presence or absence of anthocyanins in grape skin was inheritance of a quality character controlled by oligogenes, and anthocyanins content was a quantitative character controlled by polygenes. Via principal component (PC) analysis, factors that affected the total content of cross progeny populations were peonidin 3-O-glucoside, malvidin 3-O-glucoside, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, petunidin 3-O-glucoside, peonidin 3-O-(6-O-coumaryl)-glucoside, and malvidin 3-O-(6-O-coumaryl)-glucoside. Anthocyanins content was a high broad sense heritability character (H²), and H² was stable in different cross combinations (ranging from 0.65 to 0.98).
Genome-wide analysis of growth-regulating factor genes in grape (Vitis vinifera L.): identification, characterization and their responsive expression to osmotic stress
Key messageIdentification, characterization and osmotic stress responsive expression of growth-regulating factor genes in grape.The growth and fruit production of grape vine are severely affected by adverse environmental conditions. Growth-regulating factors (GRFs) play a vital role in the regulation of plant growth, reproduction and stress tolerance. However, their biological functions in fruit vine crops are still largely unknown. In the present study, a total number of nine VvGRFs were identified in the grape genome. Phylogenetic and collinear relationship analysis revealed that they formed seven subfamilies, and have gone through three segmental duplication events. All VvGRFs were predicted to be nucleic localized and contained both the conserved QLQ and WRC domains at their N-terminals, one of the typical structural features of GRF proteins. Quantitative real-time PCR analyses demonstrated that all VvGRFs, with a predominant expression of VvGRF7, were constitutively expressed in roots, leaves and stems of grape plants, and showed responsive expression to osmotic stress. Further growth phenotypic analysis demonstrated that ectopic expression of VvGRF7 promoted the growth and sensitivity of transgenic Arabidopsis plants to osmotic stress. Our findings provide important information for the future study of VvGRF gene functions, and potential gene resources for the genetic breeding of new fruit vine varieties with improved fruit yield and stress tolerance.
The Tonoplast Intrinsic Protein Gene KvTIP3 is Responsive to Different Abiotic Stresses in Kosteletzkya virginica
In higher plants, aquaporin proteins (AQPs) play important roles in the uptake of water across cell membranes. However, their functions in halophytes are still largely unknown. In this work, we isolated, cloned, and identified KvTIP3, a tonoplast intrinsic protein gene from Kosteletzkya virginica. Bioinformatic analyses demonstrated that KvTIP3 encoded a tonoplast protein with the common properties of AQPs. Further multiple sequence alignment and phylogenetic analyses showed that KvTIP3 shared 65%–82% homology with other AQPs from Arabidopsis, cotton, polar, and cocoa. Quantitative real-time PCR (qPCR) analyses revealed that KvTIP3 was ubiquitously expressed in various tissues such as leaves, stems, and roots, with a predominant expression in roots. In addition, KvTIP3 transcript was strongly induced by NaCl, low temperature, and ABA in K. virginica. Our findings suggest that KvTIP3 encodes a new AQP possibly involved in multiple abiotic stress responses in K. virginica, and KvTIP3 could be used as a potential candidate gene for the improvement of plants resistant to various abiotic stresses.
Isolation and characterization of a high-affinity ammonium transporter ApAMT1;1 in alligatorweed
In aquatic fields, ammonium (NH4+) is the most preferred nitrogen (N) source used by plants. The uptake of NH4+ is facilitated by the family of ammonium transporters (AMTs). However, the molecular functions of AMTs in aquatic plants are largely unknown. In this work, a new NH4+ transporter encoding gene, ApAMT1;1, was isolated from the typical aquatic plant alligatorweed, using degenerated primers and rapid amplification of cDNA end (RACE) techniques. Quantitative real time PCR showed that ApAMT1;1 was predominantly expressed in roots, and significantly induced by NH4+ starvation in all tested tissues, including leaves, stems and roots. Functional determination and 15N-labeled ammonium uptake assays in yeast cells indicated that ApAMT1;1 was a typical high-affinity transporter, with a 38.6 μM Km value, and the phosphorylation site T469 was required to retain its NH4+ uptake capacity. Further analyses with Met sulfoximine (MSX), a NH4+ assimilation inhibitor, demonstrated that ApAMT1;1-mediated NH4+ uptake might be feedback regulated by the internal NH4+ accumulation. Our results reveal a functional role of ApAMT1;1 in the uptake and transport of NH4+ in aquatic plants.
Effect of carbonization atmosphere on the structure changes of PAN carbon membranes
PAN carbon membranes were prepared by carbonizing the initial PAN membranes in vacuum and Ar at different temperatures. FTIR, Raman and XRD were applied to study the influence of carbonization atmosphere on the structure changes of PAN carbon membranes. The variations in adsorption peaks of FTIR, the intensity, position and FWHM of the Raman peaks, and microcrystallite parameters from XRD (e.g., d 002 , Lc and La ) are correlated with the structure change of PAN carbon membranes. Analyses results reveal that vacuum atmosphere can produce PAN carbon membranes with higher order degree than those in Ar atmosphere, although the structures of PAN carbon membranes prepared in the two atmospheres are both amorphous. In addition, vacuum atmosphere can significantly accelerate the degradation reaction of PAN membranes and favors the preparation of carbon membranes with smaller pore size.
Prompt Sapper: A LLM-Empowered Production Tool for Building AI Chains
The emergence of foundation models, such as large language models (LLMs) GPT-4 and text-to-image models DALL-E, has opened up numerous possibilities across various domains. People can now use natural language (i.e. prompts) to communicate with AI to perform tasks. While people can use foundation models through chatbots (e.g., ChatGPT), chat, regardless of the capabilities of the underlying models, is not a production tool for building reusable AI services. APIs like LangChain allow for LLM-based application development but require substantial programming knowledge, thus posing a barrier. To mitigate this, we propose the concept of AI chain and introduce the best principles and practices that have been accumulated in software engineering for decades into AI chain engineering, to systematise AI chain engineering methodology. We also develop a no-code integrated development environment, Prompt Sapper, which embodies these AI chain engineering principles and patterns naturally in the process of building AI chains, thereby improving the performance and quality of AI chains. With Prompt Sapper, AI chain engineers can compose prompt-based AI services on top of foundation models through chat-based requirement analysis and visual programming. Our user study evaluated and demonstrated the efficiency and correctness of Prompt Sapper.