Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
150 result(s) for "Cheng, Lily I."
Sort by:
An engineered bispecific DNA-encoded IgG antibody protects against Pseudomonas aeruginosa in a pneumonia challenge model
The impact of broad-spectrum antibiotics on antimicrobial resistance and disruption of the beneficial microbiome compels the urgent investigation of bacteria-specific approaches such as antibody-based strategies. Among these, DNA-delivered monoclonal antibodies (DMAbs), produced by muscle cells in vivo, potentially allow the prevention or treatment of bacterial infections circumventing some of the hurdles of protein IgG delivery. Here, we optimize DNA-delivered monoclonal antibodies consisting of two potent human IgG clones, including a non-natural bispecific IgG1 candidate, targeting Pseudomonas aeruginosa . The DNA-delivered monoclonal antibodies exhibit indistinguishable potency compared to bioprocessed IgG and protect against lethal pneumonia in mice. The DNA-delivered monoclonal antibodies decrease bacterial colonization of organs and exhibit enhanced adjunctive activity in combination with antibiotics. These studies support DNA-delivered monoclonal antibodies delivery as a potential strategy to augment the host immune response to prevent serious bacterial infections, and represent a significant advancement toward broader practical delivery of monoclonal antibody immunotherapeutics for additional infectious pathogens. DNA-delivered monoclonal antibodies (DMAbs) can be produced by muscle cells in vivo, potentially allowing prevention or treatment of infectious diseases. Here, the authors show that two DMAbs targeting Pseudomonas aeruginosa proteins confer protection against lethal pneumonia in mice.
Vaccination with synthetic long peptide formulated with CpG in an oil-in-water emulsion induces robust E7-specific CD8 T cell responses and TC-1 tumor eradication
Background Despite considerable efforts at developing therapeutic vaccines for cancer, clinical translation of preclinical successes has been challenging, largely due to the difficulty of inducing strong and sustained cytotoxic T lymphocyte (CTL) responses in patients. Several peptide-based cancer vaccines have failed to show sustainable tumor regression in the clinic, possibly because of a lack of optimization of both the adjuvant and antigen components of the preparations. Here, we aimed to develop and optimize a vaccine format utilizing a synthetic long peptide (SLP) containing the human papilloma virus 16 (HPV16) E7 antigen, with a centrally located defined MHC class I epitope, and evaluate its immunogenicity and efficacy in combination with various adjuvant formulations. Methods E7 31–73 SLP was tested alone or in combination with toll-like receptor (TLR)3, TLR4, TLR7/8 and TLR9 agonists and formulated in oil-in-water (o/w) or water-in-oil (w/o) emulsions to determine a vaccine format inducing a robust CD8 T cell response in murine models. Once a lead vaccine format was determined, we examined its ability to inhibit tumor growth in the murine TC-1 model that expresses HPV16 E7 antigen. Results We identified the TLR9 agonist CpG formulated in a squalene-based o/w emulsion as the most potent adjuvant, inducing the expansion of multifunctional antigen specific CD8 T cells with cytolytic potential. We also demonstrated that SLP E7 31–73  + CpG + o/w emulsion vaccine can provide prophylactic and more importantly, therapeutic benefit in the TC-1 murine tumor model. Conclusions Our results demonstrate that the novel vaccine format E7 SLP + CpG delivered in an o/w emulsion holds potential for the promotion of strong CTL responses and tumor eradication and encourages further development of peptide/adjuvant vaccines in cancer immunotherapy strategies.
Impaired B Cell Apoptosis Results in Autoimmunity That Is Alleviated by Ablation of Btk
While apoptosis plays a role in B-cell self-tolerance, its significance in preventing autoimmunity remains unclear. Here, we report that dysregulated B cell apoptosis leads to delayed onset autoimmune phenotype in mice. Our longitudinal studies revealed that mice with B cell-specific deletion of pro-apoptotic Bim ( BBim fl/fl ) have an expanded B cell compartment with a notable increase in transitional, antibody secreting and recently described double negative (DN) B cells. They develop greater hypergammaglobulinemia than mice lacking Bim in all cells and accumulate several autoantibodies characteristic of Systemic Lupus Erythematosus (SLE) and related Sjögren’s Syndrome (SS) including anti-nuclear, anti-Ro/SSA and anti-La/SSB at a level comparable to NODH2h4 autoimmune mouse model. Furthermore, lymphocytes infiltrated the tissues including submandibular glands and formed follicle-like structures populated with B cells, plasma cells and T follicular helper cells indicative of ongoing immune reaction. This autoimmunity was ameliorated upon deletion of Bruton’s tyrosine kinase (Btk) gene, which encodes a key B cell signaling protein. These studies suggest that Bim-mediated apoptosis suppresses and B cell tyrosine kinase signaling promotes B cell-mediated autoimmunity.
Development and validation of a rabbit model of Pseudomonas aeruginosa non-ventilated pneumonia for preclinical drug development
New drugs targeting antimicrobial resistant pathogens, including , have been challenging to evaluate in clinical trials, particularly for the non-ventilated hospital-acquired pneumonia and ventilator-associated pneumonia indications. Development of new antibacterial drugs is facilitated by preclinical animal models that could predict clinical efficacy in patients with these infections. We report here an FDA-funded study to develop a rabbit model of non-ventilated pneumonia with by determining the extent to which the natural history of animal disease reproduced human pathophysiology and conducting validation studies to evaluate whether humanized dosing regimens of two antibiotics, meropenem and tobramycin, can halt or reverse disease progression. In a rabbit model of non-ventilated pneumonia, endobronchial challenge with live 6206, but not with UV-killed Pa6206, caused acute respiratory distress syndrome, as evidenced by acute lung inflammation, pulmonary edema, hemorrhage, severe hypoxemia, hyperlactatemia, neutropenia, thrombocytopenia, and hypoglycemia, which preceded respiratory failure and death. Pa6206 increased >100-fold in the lungs and then disseminated from there to infect distal organs, including spleen and kidneys. At 5 h post-infection, 67% of Pa6206-challenged rabbits had PaO <60 mmHg, corresponding to a clinical cut-off when oxygen therapy would be required. When administered at 5 h post-infection, humanized dosing regimens of tobramycin and meropenem reduced mortality to 17-33%, compared to 100% for saline-treated rabbits ( <0.001 by log-rank tests). For meropenem which exhibits time-dependent bactericidal activity, rabbits treated with a humanized meropenem dosing regimen of 80 mg/kg q2h for 24 h achieved 100% T>MIC, resulting in 75% microbiological clearance rate of Pa6206 from the lungs. For tobramycin which exhibits concentration-dependent killing, rabbits treated with a humanized tobramycin dosing regimen of 8 mg/kg q8h for 24 h achieved C /MIC of 9.8 ± 1.4 at 60 min post-dose, resulting in 50% lung microbiological clearance rate. In contrast, rabbits treated with a single tobramycin dose of 2.5 mg/kg had C /MIC of 7.8 ± 0.8 and 8% (1/12) microbiological clearance rate, indicating that this rabbit model can detect dose-response effects. The rabbit model may be used to help predict clinical efficacy of new antibacterial drugs for the treatment of non-ventilated pneumonia.
Mouse model of hematogenous implant-related Staphylococcus aureus biofilm infection reveals therapeutic targets
Infection is a major complication of implantable medical devices, which provide a scaffold for biofilm formation, thereby reducing susceptibility to antibiotics and complicating treatment. Hematogenous implant-related infections following bacteremia are particularly problematic because they can occur at any time in a previously stable implant. Herein, we developed a model of hematogenous infection in which an orthopedic titanium implant was surgically placed in the legs of mice followed 3 wk later by an i.v. exposure to Staphylococcus aureus. This procedure resulted in a marked propensity for a hematogenous implant-related infection comprised of septic arthritis, osteomyelitis, and biofilm formation on the implants in the surgical legs compared with sham-operated surgical legs without implant placement and with contralateral nonoperated normal legs. Neutralizing human monoclonal antibodies against α-toxin (AT) and clumping factor A (ClfA), especially in combination, inhibited biofilm formation in vitro and the hematogenous implant-related infection in vivo. Our findings suggest that AT and ClfA are pathogenic factors that could be therapeutically targeted against S. aureus hematogenous implant-related infections.
Novel vagrant records and occurrence of vector-borne pathogens in King Penguins (Aptenodytes patagonicus) in South Africa
The King Penguin (Aptenodytes patagonicus) is a pelagic seabird that breeds on Subantarctic islands and is considered a rare vagrant in South Africa. From 2001 to 2017, six King Penguins were rescued along the South African coast and admitted into rehabilitation centers. These and previous records of King Penguins were obtained near the country’s major ports, which suggests that some of these birds may have been ship-assisted. One of the King Penguins evaluated in this study died shortly after being admitted to the rehabilitation center due to extensive hemorrhage caused by a long-line fishing hook, and another had a beak wound consistent with fishing hook injury. Three King Penguins were infected with the tick-borne protozoan Babesia peircei and two died as a result of babesiosis. One King Penguin was diagnosed with an infection by Rickettsia-like organisms. Pox-like lesions, presumably mosquito-borne, developed on the eyelid skin of one penguin. Additionally, one of two King Penguins permanently captive in Cape Town during the same period also presented a lethal case of spirochetosis, which was possibly tick-borne. These novel records of vector-borne pathogens in King Penguins highlight the risk of seabird rehabilitation centers to serve as potential sources of pathogens to vagrant species, while also illustrating the opportunities that these centers provide for pathogen research and surveillance.
Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation
In leukemic mice, fasting reduces the development of acute lymphoblastic leukemia, but not acute myeloid leukemia, via upregulation of leptin receptor expression and signaling in the leukemic cells. New therapeutic approaches are needed to treat leukemia effectively. Dietary restriction regimens, including fasting, have been considered for the prevention and treatment of certain solid tumor types. However, whether and how dietary restriction affects hematopoietic malignancies is unknown. Here we report that fasting alone robustly inhibits the initiation and reverses the leukemic progression of both B cell and T cell acute lymphoblastic leukemia (B-ALL and T-ALL, respectively), but not acute myeloid leukemia (AML), in mouse models of these tumors. Mechanistically, we found that attenuated leptin-receptor (LEPR) expression is essential for the development and maintenance of ALL, and that fasting inhibits ALL development by upregulation of LEPR and its downstream signaling through the protein PR/SET domain 1 (PRDM1). The expression of LEPR signaling-related genes correlated with the prognosis of pediatric patients with pre-B-ALL, and fasting effectively inhibited B-ALL growth in a human xenograft model. Our results indicate that the effects of fasting on tumor growth are cancer-type dependent, and they suggest new avenues for the development of treatment strategies for leukemia.
Cryo-EM structures of the TMEM16A calcium-activated chloride channel
Electron cryo-microscopy density maps of mouse TMEM16A reconstituted in nanodiscs or solubilized in detergent reveal two functional states of calcium-activated chloride channels. TMEM16A structure solved The diverse TMEM16 membrane protein family contains Ca( II )-activated chloride channels, lipid scramblases and cation channels. TMEM16A mediates chloride-ion permeation, which controls neuronal signalling, muscle contraction and numerous other physiological functions. In this issue of Nature , two groups have solved the structure of TMEM16A by using cryo-electron microscopy, providing insights into the function of this channel. Unlike other ligand-gated ion channels, the Ca( II ) ion interacts with the pore directly, where a glycine residue acts as a flexible hinge to adjust calcium sensitivity. Raimund Dutzler and colleagues report the structure of the protein in both Ca( II )-free and Ca( II )-bound states, which shows how calcium binding facilitates the structural rearrangements involved in channel activation. In the second Letter, Lily Jan and colleagues present two functional states of TMEM16A in the glycolipid LMNG and in nanodiscs, with one and two Ca( II ) ions bound, respectively. The closed conformation observed in nanodiscs is proposed to show channel rundown after prolonged Ca( II ) activation. Calcium-activated chloride channels (CaCCs) encoded by TMEM16A 1 , 2 , 3 control neuronal signalling, smooth muscle contraction, airway and exocrine gland secretion, and rhythmic movements of the gastrointestinal system 4 , 5 , 6 , 7 . To understand how CaCCs mediate and control anion permeation to fulfil these physiological functions, knowledge of the mammalian TMEM16A structure and identification of its pore-lining residues are essential. TMEM16A forms a dimer with two pores 8 , 9 . Previous CaCC structural analyses have relied on homology modelling of a homologue (nhTMEM16) from the fungus Nectria haematococca that functions primarily as a lipid scramblase 10 , 11 , 12 , as well as subnanometre-resolution electron cryo-microscopy 12 . Here we present de novo atomic structures of the transmembrane domains of mouse TMEM16A in nanodiscs and in lauryl maltose neopentyl glycol as determined by single-particle electron cryo-microscopy. These structures reveal the ion permeation pore and represent different functional states. The structure in lauryl maltose neopentyl glycol has one Ca 2+ ion resolved within each monomer with a constricted pore; this is likely to correspond to a closed state, because a CaCC with a single Ca 2+ occupancy requires membrane depolarization in order to open (C.J.P. et al ., manuscript submitted). The structure in nanodiscs has two Ca 2+ ions per monomer and its pore is in a closed conformation; this probably reflects channel rundown, which is the gradual loss of channel activity that follows prolonged CaCC activation in 1 mM Ca 2+ . Our mutagenesis and electrophysiological studies, prompted by analyses of the structures, identified ten residues distributed along the pore that interact with permeant anions and affect anion selectivity, as well as seven pore-lining residues that cluster near pore constrictions and regulate channel gating. Together, these results clarify the basis of CaCC anion conduction.
Global Cancer Surgery: pragmatic solutions to improve cancer surgery outcomes worldwide
The first Lancet Oncology Commission on Global Cancer Surgery was published in 2015 and serves as a landmark paper in the field of cancer surgery. The Commission highlighted the burden of cancer and the importance of cancer surgery, while documenting the many inadequacies in the ability to deliver safe, timely, and affordable cancer surgical care. This Commission builds on the first Commission by focusing on solutions and actions to improve access to cancer surgery globally, developed by drawing upon the expertise from cancer surgery leaders across the world. We present solution frameworks in nine domains that can improve access to cancer surgery. These nine domains were refined to identify solutions specific to the six WHO regions. On the basis of these solutions, we developed eight actions to propel essential improvements in the global capacity for cancer surgery. Our initiatives are broad in scope, pragmatic, affordable, and contextually applicable, and aimed at cancer surgeons as well as leaders, administrators, elected officials, and health policy advocates. We envision that the solutions and actions contained within the Commission will address inequities and promote safe, timely, and affordable cancer surgery for every patient, regardless of their socioeconomic status or geographic location.
Identification of a drug binding pocket in TMEM16F calcium-activated ion channel and lipid scramblase
The dual functions of TMEM16F as Ca 2+ -activated ion channel and lipid scramblase raise intriguing questions regarding their molecular basis. Intrigued by the ability of the FDA-approved drug niclosamide to inhibit TMEM16F-dependent syncytia formation induced by SARS-CoV-2, we examined cryo-EM structures of TMEM16F with or without bound niclosamide or 1PBC, a known blocker of TMEM16A Ca 2+ -activated Cl - channel. Here, we report evidence for a lipid scrambling pathway along a groove harboring a lipid trail outside the ion permeation pore. This groove contains the binding pocket for niclosamide and 1PBC. Mutations of two residues in this groove specifically affect lipid scrambling. Whereas mutations of some residues in the binding pocket of niclosamide and 1PBC reduce their inhibition of TMEM16F-mediated Ca 2+ influx and PS exposure, other mutations preferentially affect the ability of niclosamide and/or 1PBC to inhibit TMEM16F-mediated PS exposure, providing further support for separate pathways for ion permeation and lipid scrambling. TMEM16F is a Ca 2+ activated ion channel and lipid scramblase involved in cell fusion. Here authors determine cryo-EM structures of TMEM16F with or without bound blockers, such as the FDA-approved drug niclosamide.