Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
230 result(s) for "Cheng, Ting-Wen"
Sort by:
A Sustainability Innovation Experiential Learning Model for Virtual Reality Chemistry Laboratory: An Empirical Study with PLS-SEM and IPMA
This study focuses on serious virtual reality games, and how users can increase their understanding of the sustainable innovation learning (SIL) model and their familiarity with sustainable development strategies. “Users” of serious games consists of all possible target groups that are interested in attaining knowledge of sustainability through the use of games that are designed for a purpose beyond entertainment, in this case, for sustainable education. This research investigates the sustainable innovation experiential learning model by using a virtual chemistry laboratory to affect academic achievement. A questionnaire was completed by students who had used the virtual lab, and structural equation modeling (SEM) was applied for analysis. Importance-performance matrix analysis (IPMA) was able to help expand the basic partial least square (PLS)-SEM result with the fraction. The results show that experiential learning significantly affects learning motivation and academic achievement. Cognitive load and self-efficacy significantly affect learning motivation. Involvement significantly affects academic achievement. The virtual chemistry laboratory significantly affects academic achievement. Students who used the sustainability innovation experiential learning model obtained a better understanding of the chemical concepts. Moreover, a virtual lab promotes students’ motivation in regard to chemistry.
Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies
Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) contributes to endosomal and lysosomal function. LIMP-2 deficiency is associated with neurological abnormalities and kidney failure and, as an acid glucocerebrosidase receptor, impacts Gaucher and Parkinson’s diseases. Here we report a crystal structure of a LIMP-2 luminal domain dimer with bound cholesterol and phosphatidylcholine. Binding of these lipids alters LIMP-2 from functioning as a glucocerebrosidase-binding monomer toward a dimeric state that preferentially binds anionic phosphatidylserine over neutral phosphatidylcholine. In cellular uptake experiments, LIMP-2 facilitates transport of phospholipids into murine fibroblasts, with a strong substrate preference for phosphatidylserine. Taken together, these biophysical and cellular studies define the structural basis and functional importance of a form of LIMP-2 for lipid trafficking. We propose a model whereby switching between monomeric and dimeric forms allows LIMP-2 to engage distinct binding partners, a mechanism that may be shared by SR-BI and CD36, scavenger receptor proteins highly homologous to LIMP-2. Lysosomal integral membrane protein-2 (LIMP-2) is a glucocerebrosidase receptor, which is linked to kidney failure and other diseases. Here the authors show that LIMP-2 is also a phospholipid receptor and present the lipid-bound structure of the LIMP-2 luminal domain dimer and discuss its lipid trafficking mechanism.
The contribution of vascular risk factors in neurodegenerative disorders: from mild cognitive impairment to Alzheimer’s disease
Background Optimization of vascular risk factor control is emerging as an alternative approach to improve cognitive outcomes in Alzheimer’s disease, although its efficacy is still under debate. We aimed to investigate the contribution of vascular risk factors on Alzheimer’s biomarkers and conversion rate to dementia in subjects with mild cognitive impairment (MCI) with low cerebral small vessel disease burden. Methods Two hundred ninety-five newly diagnosed MCI subjects were enrolled from March 2005 to May 2017 for a cross-sectional assessment of vascular risk factors and Alzheimer’s plasma and imaging biomarkers, followed by a cognitive outcome assessment 24 months after enrollment. The association between vascular risk factors and Alzheimer’s biomarkers were tested using multivariable linear regression models adjusted with age, gender, education, and APOE ε4 allele. The association between vascular risk factors and conversion to dementia was tested using multivariable logistic regression models adjusted with age, gender, education, and baseline Mini-Mental State Examination (MMSE) score. Results At baseline, higher low-density lipoprotein (LDL) cholesterol level was associated with more advanced plasma biomarkers, including Aβ42/Aβ40 ratio ( P  = 0.012) and tau level ( P  = 0.001). A history of hypertension was associated with more advanced white matter hyperintensity ( P  = 0.011), while statin therapy for dyslipidemia was associated with less advanced white matter hyperintensity ( P  = 0.002). At 24 months, individual vascular risk factor was not significantly associated with cognitive outcome. By contrast, statin therapy for dyslipidemia was associated with reduced conversion to dementia (adjusted OR = 0.191, 95% CI = 0.062~0.586, P  = 0.004). Conclusions For MCI subjects, dyslipidemia may contribute to AD-related neurodegeneration while hypertension may contribute to vascular pathology. The association between statin therapy for dyslipidemia and reduced conversion to dementia supports further interventional study to evaluate the potential beneficial effect of statin in MCI subjects.
Honokiol/Magnolol-Loaded Self-Assembling Lecithin-Based Mixed Polymeric Micelles (lbMPMs) for Improving Solubility to Enhance Oral Bioavailability
This study was intended to utilize lecithin-based mixed polymeric micelles ( MPMs) for enhancing the solubility and bioavailability of honokiol and magnolol to resolve the hindrance of their extreme hydrophobicity on the clinical applications. Lecithin was selected to increase the volume of the core of MPMs, thereby providing a greater solubilization capacity. A series of amphiphilic polymers (sodium deoxycholate [NaDOC], Cremophor and Pluronic series) were included with lecithin for screening and optimization. After preliminary evaluation and subsequentially optimization, two MPMs formulations composed of honokiol/magnolol:lecithin:NaDOC ( MPMs[NaDOC]) and honokiol/magnolol:lecithin:PP123 ( MPMs[PP123]) in respective ratios of 6:2:5 and 1:1:10 were optimally obtained with the mean particle sizes of 80-150 nm, encapsulation efficacy (EEs) of >90%, and drug loading (DL) of >9.0%. These MPMs efficiently stabilized honokiol/magnolol in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C. PK study demonstrated that MPMs[NaDOC] showed much improvement in enhancing bioavailability than that by MPMs[PP123] for both honokiol and magnolol. The absolute bioavailability for honokiol and magnolol after intravenous administration of MPMs[NaDOC] exhibited 0.93- and 3.4-fold increases, respectively, compared to that of free honokiol and magnolol. For oral administration with MPMs[NaDOC], the absolute bioavailability of honokiol was 4.8%, and the absolute and relative bioavailability of magnolol were 20.1% and 2.9-fold increase, respectively. Overall, honokiol/magnolol loaded in MPMs[NaDOC] showed an improvement of solubility with suitable physical characteristics leading to enhance honokiol and magnolol bioavailability and facilitating their wider application as therapeutic agents for treating human disorders.
Development of a Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) of Ciprofloxacin Hydrochloride
Sangelose® (SGL) is a novel hydroxypropyl methylcellulose (HPMC) derivative that has been hydrophobically modified. Due to its high viscosity, SGL has the potential as a gel-forming and release-rate-controlled material for application in swellable and floating gastroretentive drug delivery systems (sfGRDDS). The aim of this study was to develop ciprofloxacin (CIP)-loaded sfGRDDS tablets comprised of SGL and HPMC in order to extend CIP exposure in the body and achieve optimal antibiotic treatment regimes. Results illustrated that SGL-HPMC-based sfGRDDS could swell to a diameter above 11 mm and showed a short floating lag time (<4 s) and long total floating time (>24 h) to prevent gastric emptying. In dissolution studies, CIP-loaded SGL-HPMC sfGRDDS demonstrated a specific biphasic release effect. Among the formulations, the SGL/type-K HPMC 15,000 cps (HPMC 15K) (50:50) group exhibited typical biphasic release profiles, with F4-CIP and F10-CIP individually releasing 72.36% and 64.14% CIP within 2 h dissolution, and sustaining release to 12 h. In pharmacokinetic studies, the SGL-HPMC-based sfGRDDS demonstrated higher Cmax (1.56–1.73 fold) and shorter Tmax (0.67 fold) than HPMC-based sfGRDDS. Furthermore, SGL 90L in GRDDS indicated an excellent biphasic release effect and a maximum elevation of relative bioavailability (3.87 fold). This study successfully combined SGL and HPMC to manufacture sfGRDDS that retain CIP in the stomach for an optimal duration while improving its pharmacokinetic characteristics. It was concluded that the SGL-HPMC-based sfGRDDS is a promising biphasic antibiotic delivery system that can both rapidly achieve the therapeutic antibiotic concentration and maintain the plasma antibiotic concentration for an extended period to maximize antibiotic exposure in the body.
Carfilzomib and Paclitaxel Co-Loaded Protein Nanoparticles an Effective Therapy Against Pancreatic Adenocarcinomas
Therapeutic efficacy of pancreatic adenocarcinomas (PACs) with combined therapy of carfilzomib (CFZ) and paclitaxel (PTX) co-loaded in human serum albumin (HSA) nanoparticles (NPs) was examined. CFZ and PTX were encapsulated individually or combined into HSA NPs by a simple reverse self-assembly method developed to achieve an optimal combination ratio for synergistic therapy. CFZ or/and PTX loaded HSA nanoparticles were physically characterized and the evaluation of combination index, drug release, pharmacokinetic, anti-tumor, and biodistribution studies were conducted. All resultant drug-loaded HSA NPs were spherical with a particle size of <150 nm and a zeta potential of -21.1~-23.0 mV. Drug loading rates and entrapment efficiencies were 9.1%~10.1% and 90.7%~97.1%, respectively. CFZ and PTX demonstrated synergistic effects in an MIA PaCa-2 cytotoxicity at a 1:2 ratio (CI were 0.01~0.25). In vitro dissolution revealed that the CFZ/PTX ratio released from the co-loaded HSA NPs (CFZ/PTX/HSA NPs) was about 1.77~2.08, which conformed to the designated loaded ratio. In vivo evaluation showed that the combined therapy of CFZ and PTX at a 1:2 ratio co-loaded in HSA NPs (CFZ/PTX/HSA NPs) demonstrated optimal synergistic improvement of the growth inhibition of MIA PaCa-2 cells with less systematic toxicity, even though the pharmacokinetic profiles observed did not show obvious beneficial and their biodistributions in tumors were found to be smaller. The one-pot reverse assembly method developed was environmentally friendly and capable of co-loading an optimal combination ratio of two chemodrugs into HSA NPs for synergistic therapy.
Preparation and Characterization of a Novel Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) for Enhanced Oral Bioavailability of Nilotinib
Regarding compliance and minimization of side effects of nilotinib therapy, there is a medical need to have a gastroretentive drug delivery system (GRDDS) to enhance the oral bioavailability that is able to administer an optimal dose in a quaque die (QD) or daily manner. In this study, the influence on a swelling and floating (sf) GRDDS composed of a polymeric excipient (HPMC 90SH 100K, HEC 250HHX, or PEO 7000K) and Kollidon® SR was examined. Results demonstrated that PEO 7000K/Kollidon SR (P/K) at a 7/3 ratio was determined to be a basic GRDDS formulation with optimal swelling and floating abilities. MCC PH102 or HPCsssl,SFP was further added at a 50% content to this basic formulation to increase the tablet hardness and release all of the drug within 24 h. Also, the caplet form and capsule form containing the same formulation demonstrated higher hardness for the former and enhanced floating ability for the latter. A pharmacokinetic study on rabbits with pH values in stomach and intestine similar to human confirmed that the enhanced oral bioavailability ranged from 2.65–8.39-fold with respect to Tasigna, a commercially available form of nilotinib. In conclusion, the multiple of enhancement of the oral bioavailability of nilotinib with sfGRDDS could offer a pharmacokinetic profile with therapeutic effectiveness for the QD administration of a reasonable dose of nilotinib, thereby increasing compliance and minimizing side effects.
Synergistic Combination of Irinotecan and Rapamycin Orally Delivered by Nanoemulsion for Enhancing Therapeutic Efficacy of Pancreatic Cancer
In recent years, combining different types of therapy has emerged as an advanced strategy for cancer treatment. In these combination therapies, oral delivery of anticancer drugs is more convenient and compliant. This study developed an irinotecan/rapamycin-loaded oral lecithin-based self-nanoemulsifying nanoemulsion preconcentrate (LBSNENPir/ra) and evaluated its synergistic combination effects on pancreatic cancer. LBSNENP loaded with irinotecan and rapamycin at a ratio of 1:1 (LBSNENPir10/ra10) had a better drug release profile and smaller particle size (<200 nm) than the drug powder. Moreover, LBSNENPir10/ra10 exhibited a strong synergistic effect (combination index [CI] < 1.0) in cell viability and combination effect studies. In the tumor inhibition study, the antitumor activity of LBSNENPir10/ra10/sily20 against MIA PaCa-2 (a human pancreatic cancer cell line) was significantly increased compared with the other groups. When administered with rapamycin and silymarin, the area under the curve and the maximum concentration of irinotecan significantly improved compared with the control. We successfully developed an irinotecan/rapamycin-loaded oral self-nanoemulsifying nanoemulsion system to achieve treatment efficacy for pancreatic cancer.
Evidenced‐based practice of decision‐making process in oncofertility care among registered nurses: A qualitative study
Aim The purpose of our study was to construct the context of the nursing action/role in oncofertility care. Design Qualitative research. Methods We applied grounded theory to guide the qualitative study. Data were collected through in‐depth interviews with 12 nurses in Taipei. The data were collected from August 2018 to February 2019. Results The core theme that described the role of nurses’ decision‐making in oncofertility care focused on understanding oncofertility from the self to the other. Care roles or actions in oncofertility that involved the process of psychological cognition were divided into four dimensions: perceiving the patient's changes and needs, triggering the self's emotions, empathizing with patient's situations and introspective care roles. Nurses who had experienced the phase of empathizing with the patient's situations developed more diverse roles and had positive actions toward oncofertility care. Based on the psychological changes for oncofertility decision‐making process, implementing contextual training in oncofertility could help nurses create more positive actions in oncofertility care.
Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano
Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids.