Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
49
result(s) for
"Cheng, Wan-Hee"
Sort by:
Contribution of Aldehydes and Their Derivatives to Antimicrobial and Immunomodulatory Activities
by
Aljaafari, Mariam Nasser
,
Lai, Kok-Song
,
Loh, Jiun-Yan
in
Alcohol
,
aldehydes
,
Aldehydes - pharmacology
2022
Essential oils (EOs) are intricate combinations of evaporative compounds produced by aromatic plants and extracted by distillation or expression. EOs are natural secondary metabolites derived from plants and have been found to be useful in food and nutraceutical manufacturing, perfumery and cosmetics; they have also been found to alleviate the phenomenon of antimicrobial resistance (AMR) in addition to functioning as antibacterial and antifungal agents, balancing menstrual cycles and being efficacious as an immune system booster. Several main aldehyde constituents can be found in different types of EOs, and thus, aldehydes and their derivatives will be the main focus of this study with regard to their antimicrobial, antioxidative, anti-inflammatory and immunomodulatory effects. This brief study also explores the activity of aldehydes and their derivatives against pathogenic bacteria for future use in the clinical setting.
Journal Article
Aflatoxin Contamination: An Overview on Health Issues, Detection and Management Strategies
by
Abushelaibi, Aisha
,
Aljaafari, Mariam Nasser
,
Sallagi, Maryam Al
in
Abnormalities
,
aflatoxin exposure
,
Aflatoxins
2023
Aflatoxins (AFs) represent one of the main mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus, with the most prevalent and lethal subtypes being AFB1, AFB2, AFG1, and AFG2. AFs are responsible for causing significant public health issues and economic concerns that affect consumers and farmers globally. Chronic exposure to AFs has been linked to liver cancer, oxidative stress, and fetal growth abnormalities among other health-related risks. Although there are various technologies, such as physical, chemical, and biological controls that have been employed to alleviate the toxic effects of AF, there is still no clearly elucidated universal method available to reduce AF levels in food and feed; the only mitigation is early detection of the toxin in the management of AF contamination. Numerous detection methods, including cultures, molecular techniques, immunochemical, electrochemical immunosensor, chromatographic, and spectroscopic means, are used to determine AF contamination in agricultural products. Recent research has shown that incorporating crops with higher resistance, such as sorghum, into animal feed can reduce the risk of AF contamination in milk and cheese. This review provides a current overview of the health-related risks of chronic dietary AF exposure, recent detection techniques, and management strategies to guide future researchers in developing better detection and management strategies for this toxin.
Journal Article
Biochemical Composition and Biological Activities of Date Palm (Phoenix dactylifera L.) Seeds: A Review
by
Abushelaibi, Aisha
,
Erin Lim, Swee-Hua
,
Aljaafari, Mariam Nasser
in
Amino acids
,
Anti-inflammatory agents
,
anticancer
2022
Date palm (Phoenix dactylifera L.) is an essential agricultural crop in most Middle Eastern countries, and its fruit, known as dates, is consumed by millions of people. Date seeds, a by-product of the date fruit processing industry, are a waste product used as food for domestic farm animals. Date seeds contain abundant sources of carbohydrates, oil, dietary fiber, and protein; they also contain bioactive phenolic compounds that may possess potential biological properties. In addition, its rich chemical composition makes date seeds suitable for use in food product formulation, cosmetics, and medicinal supplements. This review aims to provide a discourse on the nutritional value of date seeds. The latest data on the cytotoxicity of date seed compounds against cancer cell lines, its ability to combat diabetes, antioxidant potential, antimicrobial effect, and anti-inflammatory activity will be provided, considering its potential to be a nutritional therapeutic agent for chronic diseases. Application of date seeds in the form of powder and oil will also be discussed.
Journal Article
Biodegradable polymeric insulin microneedles – a design and materials perspective review
by
Sundarapandian, Ramkanth
,
Hashim, Najihah Mohd
,
Mohamed Sofian, Zarif
in
biopolymeric insulin microneedles
,
Diabetes
,
implantable insulin microneedles
2024
Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.
Journal Article
Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review
by
Mohamed Alitheen, Noorjahan Banu
,
Osman, Mohd Azuraidi
,
Lai, Kok-Song
in
Bone Morphogenetic Proteins - metabolism
,
Bones
,
Cell cycle
2023
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3′-untranslated regions (3′-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Journal Article
MgrB Mutations and Altered Cell Permeability in Colistin Resistance in Klebsiella pneumoniae
by
Chang, Sook-Keng
,
Lim, Swee-Hua Erin
,
Cheng, Wan-Hee
in
Antibiotics
,
Antimicrobial agents
,
Bacteria
2022
There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
Journal Article
Oxidative Stress Parameters as Biomarkers of Cardiovascular Disease towards the Development and Progression
by
Hee, Cheng-Wan
,
Lim, Swee Hua Erin
,
Lai, Kok Song
in
Angina pectoris
,
Antioxidants
,
Biomarkers
2022
Cardiovascular disease (CVD) remains the leading cause of death globally, with unhealthy lifestyles today greatly increasing the risk. Over the decades, scientific investigation has been carried out on reactive oxygen species (ROS) and their resultant oxidative stress based on their changes made on biological targets such as lipids, proteins, and DNA. Since the existing clinical studies with antioxidants failed to provide relevant findings on CVD prediction, the focus has shifted towards recognition of oxidised targets as biomarkers to predict prognosis and response to accurate treatment. The identification of redox markers could help clinicians in providing risk stratification for CVD events beyond the traditional prognostic and diagnostic targets. This review will focus on how oxidant-related parameters can be applied as biomarkers for CVD based on recent clinical evidence.
Journal Article
Anti- and Pro-Oxidant Properties of Essential Oils against Antimicrobial Resistance
by
Tan, Yong-Hui
,
Yang, Shun-Kai
,
Maran, Sathiya
in
antibiotic resistance
,
Antibiotics
,
Antimicrobial agents
2022
The rapid evolution of antimicrobial resistance (AMR) has remained a major public health issue, reducing the efficacy of antibiotics and increasing the difficulty of treating infections. The discovery of novel antimicrobial agents is urgently needed to overcome the challenges created by AMR. Natural products such as plant extracts and essential oils (EOs) have been viewed as potential candidates to combat AMR due to their complex chemistry that carries inherent pro-oxidant and antioxidant properties. EOs and their constituents that hold pro-oxidant properties can induce oxidative stress by producing reactive oxygen species (ROS), leading to biological damage in target cells. In contrast, the antioxidant properties scavenge free radicals through offsetting ROS. Both pro-oxidant and antioxidant activities in EOs represent a promising strategy to tackle AMR. Thus, this review aimed to discuss how pro-oxidants and antioxidants in EOs may contribute to the mitigation of AMR and provided a detailed description of the challenges and limitations of utilizing them as a means to combat AMR.
Journal Article
λ-Carrageenan promotes plant growth in banana via enhancement of cellular metabolism, nutrient uptake, and cellular homeostasis
2022
Banana (
Musa acuminata
) is an important fruit crop and source of income for various countries, including Malaysia. To date, current agrochemical practice has become a disputable issue due to its detrimental effect on the environment. λ-carrageenan, a natural polysaccharide extracted from edible red seaweed, has been claimed to be a potential plant growth stimulator. Hence, the present study investigates the effects of λ-carrageenan on plant growth using
Musa acuminata
cv. Berangan (AAA). Vegetative growth such as plant height, root length, pseudostem diameter, and fresh weight was improved significantly in λ-carrageenan-treated banana plants at an optimum concentration of 750 ppm. Enhancement of root structure was also observed in optimum λ-carrageenan treatment, facilitating nutrients uptake in banana plants. Further biochemical assays and gene expression analysis revealed that the increment in growth performance was consistent with the increase of chlorophyll content, protein content, and phenolic content, suggesting that λ-carrageenan increases photosynthesis rate, protein biosynthesis, and secondary metabolites biosynthesis which eventually stimulate growth. Besides, λ-carrageenan at optimum concentration also increased catalase and peroxidase activities, which led to a significant reduction in hydrogen peroxide and malondialdehyde, maintaining cellular homeostasis in banana plants. Altogether, λ-carrageenan at optimum concentration improves the growth of banana plants via inducing metabolic processes, enhancing nutrient uptake, and regulation of cell homeostasis. Further investigations are needed to evaluate the effectiveness of λ-carrageenan on banana plants under field conditions.
Journal Article
Vehicle to Grid: Technology, Charging Station, Power Transmission, Communication Standards, Techno-Economic Analysis, Challenges, and Recommendations
by
Mahmud, Md
,
Khan, Md Munir Hayet
,
Habib, A. K. M. Ahasan
in
Alternative energy sources
,
Batteries
,
charging communication standards
2025
Electric vehicles (EVs) must be used as the primary mode of transportation as part of the gradual transition to more environmentally friendly clean energy technology and cleaner power sources. Vehicle-to-grid (V2G) technology has the potential to improve electricity demand, control load variability, and improve the sustainability of smart grids. The operation and principles of V2G and its varieties, the present classifications and types of EVs sold on the market, applicable policies for V2G and business strategy, implementation challenges, and current problem-solving techniques have not been thoroughly examined. This paper exposes the research gap in the V2G area and more accurately portrays the present difficulties and future potential in V2G deployment globally. The investigation starts by discussing the advantages of the V2G system and the necessary regulations and commercial representations implemented in the last decade, followed by a description of the V2G technology, charging communication standards, issues related to V2G and EV batteries, and potential solutions. A few major issues were brought to light by this investigation, including the lack of a transparent business model for V2G, the absence of stakeholder involvement and government subsidies, the excessive strain that V2G places on EV batteries, the lack of adequate bidirectional charging and standards, the introduction of harmonic voltage and current into the grid, and the potential for unethical and unscheduled V2G practices. The results of recent studies and publications from international organizations were altered to offer potential answers to these research constraints and, in some cases, to highlight the need for further investigation. V2G holds enormous potential, but the plan first needs a lot of financing, teamwork, and technological development.
Journal Article