Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"Cheng, Yuanzhe"
Sort by:
Numerical Study on Thermal Stress of High Temperature Proton Exchange Membrane Fuel Cells during Start-Up Process
2023
High-temperature proton-exchange membrane fuel cells (HT-PEMFCs) with phosphoric-doped polybenzimidazole (PBI) membranes have a higher operating temperature compared to the PEMFCs operating below 373.15 K. The fuel cell is first heated from room temperature to the minimum operating temperature to avoid the generation of liquid water. The existence of liquid water can result in the loss of phosphoric acid and then affect the cell performance. In this study, the start-up process of HT-PEMFCs is numerically studied by establishing a three-dimensional non-isothermal mathematical model. Preheated gas is supplied into gas flow channels to heat the fuel cell, and then voltage load is applied to accelerate the start-up process. Effects of voltage (0.9 V, 0.7 V and 0.5 V) and flow arrangement (co-flow and counter flow) on temperature, current density, proton conductivity and stress distributions of fuel cells are examined. It is found that the maximum stress is increased when a lower voltage is adopted, and the counter-flow arrangement provides a more uniform stress distribution than that of co-flow arrangement.
Journal Article
Impact of Membrane Phosphoric Acid Doping Level on Transport Phenomena and Performance in High Temperature PEM Fuel Cells
by
Wang, Chongyang
,
Cheng, Yuanzhe
,
Yang, Guogang
in
Aluminum
,
Charge transfer
,
Chemical reactions
2021
In this work, a three-dimensional mathematical model including the fluid flow, heat transfer, mass transfer, and charge transfer incorporating electrochemical reactions was developed and applied to investigate the transport phenomena and performance in high-temperature proton exchange membrane fuel cells (HT-PEMFCs) with a membrane phosphoric acid doping level of 5, 7, 9, 11. The cell performance is evaluated and compared in terms of the polarization curve. The distributions of temperature, oxygen mass fraction, water mass fraction, proton conductivity, and local current density of four cases are given and compared in detail. Results show that the overall performance and local transport characteristics are significantly affected by the membrane phosphoric acid doping level.
Journal Article
A Linear Optimization for Slope Leveling of Ground-Mounted Centralized Photovoltaic Sites
by
Wang, Yongming
,
Ren, Jinming
,
Cheng, Yuanzhe
in
Alternative energy sources
,
Case studies
,
Civil engineering
2024
Slope leveling is essential for the successful implementation of ground-mounted centralized photovoltaic (PV) plants, but currently, there is a lack of optimization methods available. To address this issue, a linear programming approach has been proposed to optimize PV slope leveling. This method involves dividing the field into blocks and grids and using hyperbolic paraboloids to simulate the design surface. By programming in MATLAB, the globally optimal solution for PV slope leveling can be calculated. Engineering case studies have demonstrated that this optimization method can achieve significant cut-and-fill volume savings ranging from 58% to 78%, when compared to the traditional segmented plane method. Additionally, the effectiveness of the optimization method improves with larger site areas and more complex terrains. A parameter analysis considering slope ratio, grid size, and block size reveals that grid size has a minimal impact on cut-and-fill volume, while slope ratio and block size have a significant influence. For typical PV projects, the recommended ranges of slope ratio, grid size, and block size are 3–7%, 5–20 m, and 30–50 m, respectively, for slope leveling design. In summary, the proposed linear optimization method provides an optimal slope leveling scheme for ground-mounted centralized PV plants, with convenient operation and fast computation.
Journal Article
Numerical analysis on the thermal management of phase change material with fins for lithium-ion batteries
2024
Purpose
The purpose of this study is to improve the thermal management of lithium-ion batteries. The phase change material (PCM) cooling does not require additional equipment to consume energy. To improve the heat dissipation capacity of batteries, fins are added in the PCM to enhance the heat transfer process.
Design/methodology/approach
Computational fluid dynamics method is used to study the influence of number of vertical fins and ring fins (i.e. 2, 4, 6 and 8 vertical fins, and 2, 3, 4 and 5 ring fins) and the combination of them on the cooling performance.
Findings
The battery maximum temperature can be decreased by the PCM with vertical or ring fins, and it can be further decreased by the combination of them. The PCM with eight vertical fins and five ring fins reduces the battery maximum temperature by 5.21 K. In addition, the temperature and liquid-phase distributions of the battery and PCM are affected by the design of the cooling system.
Practical implications
This work can provide guidelines for the development of new and efficient PCM cooling systems for lithium-ion batteries.
Originality/value
The combination of PCM and fins can be used to reduce the battery maximum temperature and temperature difference.
Journal Article
Numerical study on thermal performance of cold plates with leaf type channels for lithium-ion batteries
2023
Purpose
The purpose of this study is to design a new type of cold plate to improve the thermal performance of liquid-cooled thermal management system of lithium-ion batteries.
Design/methodology/approach
A cold plate with leaf type channels is proposed to enhance the cooling performance. Effects of the leaf type channel parameters (i.e. channel angle 20°, 40°, 60°, 80°; coolant mass flow rate 0.25 × 10–3, 0.50 × 10–3, 0.75 × 10–3, 1.00 × 10–3, 1.25 × 10–3 kg·s−1; channel number 1, 3, 5, 7) on the performance are numerically investigated by using a 3D mathematical model.
Findings
Compared to the traditional I type channels, the leaf type channels have better cooling performance. It is found that the battery temperature variation and channel pressure drop are decreased with decreasing channel angle and increasing channel number. In addition, the cooling performance can be improved by increasing the coolant mass flow rate.
Practical implications
This study can provide guidance for the development of novel effective cold plates.
Originality/value
The design of cold plates with leaf type channels can be used in liquid-cooled thermal management system to reduce the battery temperature difference.
Journal Article
Preparation of Hierarchical Highly Ordered Porous Films of Brominated Poly(phenylene oxide) and Hydrophilic SiO2/C Membrane via the Breath Figure Method
2018
Porous permeable films materials have very broad prospects in the treatment of sludge-containing waste water due to their large surface area and good microfiltration. In this work, highly ordered porous membranes have been prepared successfully on ice substrates using a poly(phenylene oxide) (BPPO)-SiO2 nanoparticle (NP) mixture by the brePorous permeable films materials have very broad prospects in the treatment of sludge-containing waste water due to their large surface area and good microfiltration. In this work, highly ordered porous membranes have been prepared successfully on ice substrates using aath figure method. Based on the theory of Pickering emulsion system and capillary flow, particle assisted membrane formation was analyzed. Another two sorts of new membranes SiO2/C membrane and hierarchical porous polymer (HPP) membrane, which were obtained by modification of the BPPO-SiO2 membrane by calcination and etching, were set up in a further study. Their properties were investigated through the methods of scanning electron microscopy (SEM), fourier transform infrared spectrometry (FTIR), ultraviolet spectrum (UV), capillary electrophoresis (CE), contact angle, and water flux tests. All these results demonstrate that both surface hydrophilicity and fouling resistance of the membrane would be improved by using SiO2 as a filler. The membranes with high permeability and antifouling properties were used for microfiltration applications.
Journal Article
Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation
2020
Separating molecules or ions with sub-Angstrom scale precision is important but technically challenging. Achieving such a precise separation using membranes requires Angstrom scale pores with a high level of pore size uniformity. Herein, we demonstrate that precise solute-solute separation can be achieved using polyamide membranes formed via surfactant-assembly regulated interfacial polymerization (SARIP). The dynamic, self-assembled network of surfactants facilitates faster and more homogeneous diffusion of amine monomers across the water/hexane interface during interfacial polymerization, thereby forming a polyamide active layer with more uniform sub-nanometre pores compared to those formed via conventional interfacial polymerization. The polyamide membrane formed by SARIP exhibits highly size-dependent sieving of solutes, yielding a step-wise transition from low rejection to near-perfect rejection over a solute size range smaller than half Angstrom. SARIP represents an approach for the scalable fabrication of ultra-selective membranes with uniform nanopores for precise separation of ions and small solutes.
Separating molecules or ions with sub-Angstrom scale precision is important but technically challenging. Here, the authors demonstrate that precise solute-solute separation can be achieved using polyamide membranes formed via surfactant-assembly regulated interfacial polymerization.
Journal Article
Ultrafast spin current generated from an antiferromagnet
2021
Antiferromagnets (AFMs) have the potential to push spintronic devices from a static condition or gigahertz frequency range to the terahertz range for the sake of high-speed processing. However, the insensitivity of AFMs to magnetic fields makes the manipulation of spin currents difficult. The ultrafast generation of the spin current in ferromagnet/heavy-metal (HM) structures has received a lot of attention in recent years, but whether a similar scenario can be observed in an AFM/HM system is still unknown. Here, we show the optical generation of ultrafast spin current in an AFM/HM heterostructure at zero external magnetic field and at room temperature by detecting the associated terahertz emission. We believe that this is a common phenomenon in antiferromagnets with strong nonlinear optical effects. Our results open an avenue of fundamental research into antiferromagnetism and a route to AFM spintronic devices.Spin currents are generated from an antiferromagnet/heavy-metal heterostructure using optical excitation on picosecond timescales. This will have applications in antiferromagnetic spintronics.
Journal Article
Lactate promotes microglial scar formation and facilitates locomotor function recovery by enhancing histone H4 lysine 12 lactylation after spinal cord injury
by
Ouyang, Fangru
,
Yu, Shuisheng
,
Hu, Xuyang
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2024
Lactate-derived histone lactylation is involved in multiple pathological processes through transcriptional regulation. The role of lactate-derived histone lactylation in the repair of spinal cord injury (SCI) remains unclear. Here we report that overall lactate levels and lactylation are upregulated in the spinal cord after SCI. Notably, H4K12la was significantly elevated in the microglia of the injured spinal cord, whereas exogenous lactate treatment further elevated H4K12la in microglia after SCI. Functionally, lactate treatment promoted microglial proliferation, scar formation, axon regeneration, and locomotor function recovery after SCI. Mechanically, lactate-mediated H4K12la elevation promoted PD-1 transcription in microglia, thereby facilitating SCI repair. Furthermore, a series of rescue experiments confirmed that a PD-1 inhibitor or microglia-specific AAV-sh-PD-1 significantly reversed the therapeutic effects of lactate following SCI. This study illustrates the function and mechanism of lactate/H4K12la/PD-1 signaling in microglia-mediated tissue repair and provides a novel target for SCI therapy.
Graphical Abstract
Journal Article
Soil and foliar selenium application: Impact on accumulation, speciation, and bioaccessibility of selenium in wheat (Triticum aestivum L.)
2022
A comprehensive study in selenium (Se) biofortification of staple food is vital for the prevention of Se-deficiency-related diseases in human beings. Thus, the roles of exogenous Se species, application methods and rates, and wheat growth stages were investigated on Se accumulation in different parts of wheat plant, and on Se speciation and bioaccessibility in whole wheat and white all-purpose flours. Soil Se application at 2 mg kg
–1
increased grains yield by 6% compared to control (no Se), while no significant effects on yield were observed with foliar Se treatments. Foliar and soil Se application of either selenate or selenite significantly increased the Se content in different parts of wheat, while selenate had higher bioavailability than selenite in the soil. Regardless of Se application methods, the Se content of the first node was always higher than the first internode. Selenomethionine (SeMet; 87–96%) and selenocystine (SeCys
2
; 4–13%) were the main Se species identified in grains of wheat. The percentage of SeMet increased by 6% in soil with applied selenite and selenate treatments at 0.5 mg kg
–1
and decreased by 12% compared with soil applied selenite and selenate at 2 mg kg
–1
, respectively. In addition, flour processing resulted in losses of Se; the losses were 12–68% in white all-purpose flour compared with whole wheat flour. The Se bioaccessibility in whole wheat and white all-purpose flours for all Se treatments ranged from 6 to 38%. In summary, foliar application of 5 mg L
–1
Se(IV) produced wheat grains that when grounds into whole wheat flour, was the most efficient strategy in producing Se-biofortified wheat. This study provides an important reference for the future development of high-quality and efficient Se-enriched wheat and wheat flour processing.
Journal Article