Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
49 result(s) for "Cheng-yuan, Mao"
Sort by:
CHIP as a therapeutic target for neurological diseases
Carboxy-terminus of Hsc70-interacting protein (CHIP) functions both as a molecular co-chaperone and ubiquitin E3 ligase playing a critical role in modulating the degradation of numerous chaperone-bound proteins. To date, it has been implicated in the regulation of numerous biological functions, including misfolded-protein refolding, autophagy, immunity, and necroptosis. Moreover, the ubiquitous expression of CHIP in the central nervous system suggests that it may be implicated in a wide range of functions in neurological diseases. Several recent studies of our laboratory and other groups have highlighted the beneficial role of CHIP in the pathogenesis of several neurological diseases. The objective of this review is to discuss the possible molecular mechanisms that contribute to the pathogenesis of neurological diseases in which CHIP has a pivotal role, such as stroke, intracerebral hemorrhage, Alzheimer’s disease, Parkinson’s disease, and polyglutamine diseases; furthermore, CHIP mutations could also cause neurodegenerative diseases. Based on the available literature, CHIP overexpression could serve as a promising therapeutic target for several neurological diseases.
Association between dietary inflammatory index and Parkinson’s disease: a prospective study of 165,531 UK biobank participants
Parkinson’s disease (PD) is a common neurodegenerative disorder that increasingly affects the aging population. Inflammation is implicated in both the onset and progression of PD, with diet influencing inflammatory pathways. The Dietary Inflammation Index (DII) measures diet-related inflammatory potential. This study aimed to assess the relationship between DII and PD. Using data from the UK Biobank, which included 165,531 participants, Cox proportional hazards models were applied to examine the association, adjusting for various covariates. During the study, 934 participants (0.6%) developed PD. While univariable analysis identified significant associations between PD risk and factors such as age, sex, smoking history, diabetes, hypertension, and education. But both univariable and multivariable analyses demonstrated consistent findings, with results across models indicating no significant association between the DII and PD risk. These findings align closely with the null hypothesis, though they do not definitively exclude the possibility of a clinically meaningful relationship due to potential limitations such as residual confounding or statistical power constraints. Further studies are needed to explore the complex relationship between diet and PD, offering insights into prevention and intervention strategies.
Identifying causal genes for migraine by integrating the proteome and transcriptome
BackgroundWhile previous genome-wide association studies (GWAS) have identified multiple risk variants for migraine, there is a lack of evidence about how these variants contribute to the development of migraine. We employed an integrative pipeline to efficiently transform genetic associations to identify causal genes for migraine.MethodsWe conducted a proteome-wide association study (PWAS) by combining data from the migraine GWAS data with proteomic data from the human brain and plasma to identify proteins that may play a role in the risk of developing migraine. We also combined data from GWAS of migraine with a novel joint-tissue imputation (JTI) prediction model of 17 migraine-related human tissues to conduct transcriptome-wide association studies (TWAS) together with the fine mapping method FOCUS to identify disease-associated genes.ResultsWe identified 13 genes in the human brain and plasma proteome that modulate migraine risk by regulating protein abundance. In addition, 62 associated genes not reported in previous migraine TWAS studies were identified by our analysis of migraine using TWAS and fine mapping. Five genes including ICA1L, TREX1, STAT6, UFL1, and B3GNT8 showed significant associations with migraine at both the proteome and transcriptome, these genes are mainly expressed in ependymal cells, neurons, and glial cells, and are potential target genes for prevention of neuronal signaling and inflammatory responses in the pathogenesis of migraine.ConclusionsOur proteomic and transcriptome findings have identified disease-associated genes that may give new insights into the pathogenesis and potential therapeutic targets for migraine.
Disrupted structure and aberrant function of CHIP mediates the loss of motor and cognitive function in preclinical models of SCAR16
CHIP (carboxyl terminus of heat shock 70-interacting protein) has long been recognized as an active member of the cellular protein quality control system given the ability of CHIP to function as both a co-chaperone and ubiquitin ligase. We discovered a genetic disease, now known as spinocerebellar autosomal recessive 16 (SCAR16), resulting from a coding mutation that caused a loss of CHIP ubiquitin ligase function. The initial mutation describing SCAR16 was a missense mutation in the ubiquitin ligase domain of CHIP (p.T246M). Using multiple biophysical and cellular approaches, we demonstrated that T246M mutation results in structural disorganization and misfolding of the CHIP U-box domain, promoting oligomerization, and increased proteasome-dependent turnover. CHIP-T246M has no ligase activity, but maintains interactions with chaperones and chaperone-related functions. To establish preclinical models of SCAR16, we engineered T246M at the endogenous locus in both mice and rats. Animals homozygous for T246M had both cognitive and motor cerebellar dysfunction distinct from those observed in the CHIP null animal model, as well as deficits in learning and memory, reflective of the cognitive deficits reported in SCAR16 patients. We conclude that the T246M mutation is not equivalent to the total loss of CHIP, supporting the concept that disease-causing CHIP mutations have different biophysical and functional repercussions on CHIP function that may directly correlate to the spectrum of clinical phenotypes observed in SCAR16 patients. Our findings both further expand our basic understanding of CHIP biology and provide meaningful mechanistic insight underlying the molecular drivers of SCAR16 disease pathology, which may be used to inform the development of novel therapeutics for this devastating disease.
The potential protective role of peripheral immunophenotypes in Alzheimer’s disease: a Mendelian randomization study
Alzheimer's disease (AD) is the most widespread neurodegenerative disease in the world. Previous studies have shown that peripheral immune dysregulation plays a paramount role in AD, but whether there is a protective causal relationship between peripheral immunophenotypes and AD risk remains ambiguous. Two-sample Mendelian randomization (MR) was performed using large genome-wide association study (GWAS) genetic data to assess causal effects between peripheral immunophenotypes and AD risk. Utilizing the genetic associations of 731 immune cell traits as exposures. We adopted the inverse variance weighted method as the primary approach. The Weighted median and MR-Egger regression methods were employed as supplements. Various sensitivity analyses were performed to assess the robustness of the outcomes. Based on the IVW method, we identified 14 immune cell traits that significantly reduced the risk of AD, of which six demonstrated statistical significance in both IVW and Weighted median methods. Among the seven immune traits, four were related to regulatory T (Treg) cells : (1) CD25++ CD45RA- CD4 not regulatory T cell % T cell (odds ratio (OR) [95% confidence interval (CI)] = 0.96 [0.95, 0.98], adjusted = 1.17E-02), (2) CD25++ CD45RA- CD4 not regulatory T cell % CD4+ T cell (OR [95% CI] = 0.97 [0.96, 0.99], adjusted = 3.77E-02), (3) Secreting CD4 regulatory T cell % CD4 regulatory T cell (OR [95% CI] = 0.98 [0.97, 0.99], adjusted = 7.10E-03), (4) Activated & secreting CD4 regulatory T cell % CD4 regulatory T cell(OR [95% CI] = 0.98 [0.97, 0.99], adjusted = 7.10E-03). In addition, HLA DR++ monocyte % monocyte (OR [95% CI] = 0.93 [0.89, 0.98], adjusted = 4.87E-02) was associated with monocytes, and HLA DR on myeloid Dendritic Cell (OR [95% CI] = 0.93 [0.89, 0.97], adjusted = 1.17E-02) was related to dendritic cells (DCs). These findings enhance the comprehension of the protective role of peripheral immunity in AD and provide further support for Treg and monocyte as potential targets for immunotherapy in AD.
Anisomycin prevents OGD-induced necroptosis by regulating the E3 ligase CHIP
Necroptosis is an essential pathophysiological process in cerebral ischemia-related diseases. Therefore, targeting necroptosis may prevent cell death and provide a much-needed therapy. Ansiomycin is an inhibitor of protein synthesis which can also activate c-Jun N-terminal kinases. The present study demonstrated that anisomycin attenuated necroptosis by upregulating CHIP (carboxyl terminus of Hsc70-interacting protein) leading to the reduced levels of receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3) proteins in two in vitro models of cerebral ischemia. Further exploration in this research revealed that losing neither the co-chaperone nor the ubiquitin E3 ligase function of CHIP could abolish its ability to reduce necroptosis. Collectively, this study identifies a novel means of preventing necroptosis in two in vitro models of cerebral ischemia injury through activating the expression of CHIP, and it may provide a potential target for the further study of the disease.
SNCA but not DNM3 and GAK modifies age at onset of LRRK2-related Parkinson’s disease in Chinese population
BackgroundRecently, rs2421947 in DNM3 (dynamin 3) was reported as a genetic modifier of age at onset (AAO) of LRRK2 G2019S-related Parkinson’s disease (PD) in a genome-wide association study in Arab-Berber population. Rs356219 in SNCA (α-synuclein) was also reported to regulate the AAO of LRRK2-related PD in European populations, and GAK (Cyclin G-associated kinase) rs1524282 was reported to be associated with an increased PD risk with an interaction with SNCA rs356219. G2019S variant is rare in Asian populations, whereas two other Asian-specific LRRK2 variants, G2385R and R1628P, are more frequent with a twofold increased risk of PD.MethodsIn this study, we investigated whether rs2421947, rs356219 and rs1524282 modified AAO in LRRK2-related PD patients in Han Chinese population. We screened LRRK2 G2385R and R1628P variants in 732 PD patients and 1992 healthy controls, and genotyped DNM3 rs2421947, SNCA rs356219 and GAK rs1524282 among the LRRK2 carriers.ResultsThe SNCA rs356219-G allele was found to increase the risk of PD in LRRK2 carriers (OR 1.50, 95%CI 1.08–2.01, P = 0.016), and the AAO of AG + GG genotypes was 4 years earlier than AA genotype (P = 0.006). Nonetheless, no similar association was found in DNM3 rs2421947 and GAK rs1524282.ConclusionsOur results show that SNCA but not DNM3 or GAK is associated with AAO of LRRK2-PD patients in Chinese population.
Genetic analysis of the TMEM230 gene in Chinese Han patients with Parkinson’s disease
TMEM230 mutations have been recently reported to cause autosomal dominant Parkinson’s disease (PD). However, there are limited studies from different ethnic populations to support the role of TMEM230 in sporadic PD. In this study, we performed a comprehensive TMEM230 mutation screening in 550 sporadic PD patients and 560 controls to elaborate the genetic contribution of TMEM230 to sporadic PD. Overall, we did not find any pathogenic mutations in the coding sequence, while we identified four variants (c.68 + 182G > A, c.78A > G, c.552 + 11A > G and c.174 + 11C > T) both in the patients and controls, and c.68 + 182G > A appeared to be associated with an increased risk of PD (odds ratio 1.782, 95% confidence interval 1.035–3.067, p  < 0.05). After Bonferroni correction, however, c. 68 + 182G > A had no significant association with sporadic PD ( p c  = 0.136, p c  > 0.05). Thus our results suggest that TMEM230 gene mutations may be rare in Chinese populations, and the variability of TMEM230 gene may not be a main factor for sporadic PD patients in Chinese Han populations. More evidence is still needed to clarify this question.
Metabolic Profiling Reveals Biochemical Pathways and Potential Biomarkers of Spinocerebellar Ataxia 3
Spinocerebellar ataxia 3, also known as Machado-Joseph disease (SCA3/MJD), is a rare autosomal-dominant neurodegenerative disease caused by an abnormal expansion of CAG repeats in the gene. In the present study, we performed a global metabolomic analysis to identify pathogenic biochemical pathways and novel biomarkers implicated in SCA3 patients. Metabolic profiling of serum samples from 13 preclinical SCA3 patients, 13 symptomatic SCA3 patients, and 15 healthy controls were mapped using ultra-high-performance liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry techniques. The symptomatic SCA3 patients showed a metabolic profile significantly distinct from those of the preclinical SCA3 patients and healthy controls. The principal differential metabolites were involved in the amino acid (AA) metabolism and fatty acid metabolism pathways. In addition, four candidate serum biomarkers, FFA 16:1 (palmitoleic acid), FFA 18:3 (linolenic acid), L-Proline and L-Tryptophan, were selected to discriminate between symptomatic SCA3 patients and healthy controls by receiver operator curve analysis with an area under the curve of 0.979. Our study demonstrates that symptomatic SCA3 patients present distinct metabolic profiles with perturbed AA metabolism and fatty acid metabolism, and FFA 16:1, FFA 18:3, L-Proline and L-Tryptophan are identified as potential disease biomarkers.