Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Chiodin, Giorgia"
Sort by:
DC-SIGN binding to mannosylated B-cell receptors in follicular lymphoma down-modulates receptor signaling capacity
2021
In follicular lymphoma (FL), surface immunoglobulin (sIg) carries mandatory N-glycosylation sites in the variable regions, inserted during somatic hypermutation. These glycosylation sites are tumor-specific, indicating a critical function in FL. Added glycan unexpectedly terminates at high mannose (Mann) and confers capability for sIg-mediated interaction with local macrophage-expressed DC-SIGN lectin resulting in low-level activation of upstream B-cell receptor signaling responses. Here we show that despite being of low-level, DC-SIGN induces a similar downstream transcriptional response to anti-IgM in primary FL cells, characterized by activation of pathways associated with B-cell survival, proliferation and cell–cell communication. Lectin binding was also able to engage post-transcriptional receptor cross-talk pathways since, like anti-IgM, DC-SIGN down-modulated cell surface expression of CXCR4. Importantly, pre-exposure of a FL-derived cell line expressing sIgM-Mann or primary FL cells to DC-SIGN, which does not block anti-IgM binding, reversibly paralyzed the subsequent Ca
2+
response to anti-IgM. These novel findings indicate that modulation of sIg function occurs in FL via lectin binding to acquired mannoses. The B-cell receptor alternative engagement described here provides two advantages to lymphoma cells: (i) activation of signaling, which, albeit of low-level, is sufficient to trigger canonical lymphoma-promoting responses, and (ii) protection from exogenous antigen by paralyzing anti-IgM-induced signaling. Blockade of this alternative engagement could offer a new therapeutic strategy.
Journal Article
FoxO1/Rictor axis induces a nongenetic adaptation to ibrutinib via Akt activation in chronic lymphocytic leukemia
by
Hoferkova, Eva
,
Panovska, Anna
,
Pospisilova, Sarka
in
1-Phosphatidylinositol 3-kinase
,
Adaptation
,
Adenine - analogs & derivatives
2024
Bruton tyrosine kinase (BTK) inhibitor therapy induces peripheral blood lymphocytosis in chronic lymphocytic leukemia (CLL), which lasts for several months. It remains unclear whether nongenetic adaptation mechanisms exist, allowing CLL cells' survival during BTK inhibitor-induced lymphocytosis and/or playing a role in therapy resistance. We show that in approximately 70% of CLL cases, ibrutinib treatment in vivo increases Akt activity above pretherapy levels within several weeks, leading to compensatory CLL cell survival and a more prominent lymphocytosis on therapy. Ibrutinib-induced Akt phosphorylation (pAktS473) is caused by the upregulation of Forkhead box protein O1 (FoxO1) transcription factor, which induces expression of Rictor, an assembly protein for the mTORC2 protein complex that directly phosphorylates Akt at serine 473 (S473). Knockout or inhibition of FoxO1 or Rictor led to a dramatic decrease in Akt phosphorylation and growth disadvantage for malignant B cells in the presence of ibrutinib (or PI3K inhibitor idelalisib) in vitro and in vivo. The FoxO1/Rictor/pAktS473 axis represents an early nongenetic adaptation to B cell receptor (BCR) inhibitor therapy not requiring PI3Kδ or BTK kinase activity. We further demonstrate that FoxO1 can be targeted therapeutically and its inhibition induces CLL cells' apoptosis alone or in combination with BTK inhibitors (ibrutinib, acalabrutinib, pirtobrutinib) and blocks their proliferation triggered by T cell factors (CD40L, IL-4, and IL-21).
Journal Article
Biological and Clinical Insight from Analysis of the Tumor B-Cell Receptor Structure and Function in Chronic Lymphocytic Leukemia
2022
The B-cell receptor (BCR) is essential to the behavior of the majority of normal and neoplastic mature B cells. The identification in 1999 of the two major CLL subsets expressing unmutated immunoglobulin (Ig) variable region genes (U-IGHV, U-CLL) of pre-germinal center origin and poor prognosis, and mutated IGHV (M-CLL) of post-germinal center origin and good prognosis, ignited intensive investigations on structure and function of the tumor BCR. These investigations have provided fundamental insight into CLL biology and eventually the mechanistic rationale for the development of successful therapies targeting BCR signaling. U-CLL and M-CLL are characterized by variable low surface IgM (sIgM) expression and signaling capacity. Variability of sIgM can in part be explained by chronic engagement with (auto)antigen at tissue sites. However, other environmental elements, genetic changes, and epigenetic signatures also contribute to the sIgM variability. The variable levels have consequences on the behavior of CLL, which is in a state of anergy with an indolent clinical course when sIgM expression is low, or pushed towards proliferation and a more aggressive clinical course when sIgM expression is high. Efficacy of therapies that target BTK may also be affected by the variable sIgM levels and signaling and, in part, explain the development of resistance.
Journal Article
IgSeqR: a protocol for the identification, assembly, and characterization of full-length tumor Immunoglobulin transcripts from unselected RNA sequencing data
2024
Immunoglobulin (IG) gene analysis provides fundamental insight into B-cell receptor structure and function. In B-cell tumors, it can inform the cell of origin and clinical outcomes. Its clinical value has been established in the two types of chronic lymphocytic leukemia with unmutated or mutated IGHV genes and is emerging in other B-cell tumors. The traditional PCR-based techniques, which are labor-intensive, rely on the attainment of either a dominant sequence or a small number of subclonal sequences and do not allow automated matching with the clonal phenotypic features. Extraction of the expressed tumor IG transcripts using high-throughput RNA sequencing (RNA-seq) can be faster and allow the collection of multiple sequences matched with the transcriptome profile. Analytical tools are regularly sought to increase the accuracy, depth, and speed of acquisition of the full IGV-(IGD)-IGJ-IGC sequences and combine the IG characteristics with other RNA-seq data. We provide here a user-friendly protocol for the rapid extraction, identification, and accurate determination of the full (leader to constant region) tumor IG templated and non-templated transcript sequence from RNA-seq. The derived amino acid sequences can be interrogated for their physico-chemical characteristics and, in certain lymphomas, predict tumor glycan types occupying acquired N-glycosylation sites. These features will then be available for association studies with the tumor transcriptome. The resulting information can also help refine diagnosis, prognosis, and potential therapeutic targeting in the most common lymphomas.
The Origin, Diagnosis, and Prognosis of Oligomannose-Type Diffuse Large B Cell Lymphoma
2025
The acquisition of N-glycosylation sites occupied by oligomannose-type glycans in the immunoglobulin complementarity-determining region (CDR) is an early clonal tumor-specific identifier of follicular lymphoma (FL). CDR-located N-glycosylation sites are also acquired in germinal-center-B-cell-like diffuse large B-cell lymphomas (GCB-DLBCL), but their significance is less defined. We used RNA-seq immunoglobulin assembly to determine the frequency and CDR location of the acquired N-glycosylation sites (AGS) in two large independent DLBCL cohorts. Composition of the glycans occupying the AGS was determined using liquid chromatography-mass spectrometry and correlated with cell-of-origin, FL signature (defined by EZB phenotype or BCL2 translocation), transcript profile, and clinical outcome. CDR-located AGS were observed in 41-46% of GCB-DLBCL but were rare in other DLBCL. Only CDR-located AGS of DLBCL with an FL signature were occupied by oligomannose-type glycans. These DLBCL were termed Mann-type DLBCL. Conversely, the AGS of the other DLBCL were either non-glycosylated or occupied by complex-type glycans. Mann-type status was an independent marker of short progression-free survival and overall survival. In contrast, the other GCB-DLBCL cases, including those with an FL signature but without AGS, had the best outcomes. Mann-type DLBCL overexpressed gene-sets of cell growth, survival, and cycling, and underexpressed proinflammatory and apoptotic pathways, irrespective of concomitant MYC translocations. Acquisition of Mann-type glycans is a highly selective environmental pressure, identifying the most aggressive GCB-DLBCL with an origin related to FL. The detection of AGS in the CDR of GCB-DLBCLs with a BCL2 translocation defines Mann-type DLBCLs, refines prognosis and marks a precise tumor interaction to block early therapeutically.