Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Cho, Eou-Sik"
Sort by:
Rapid photonic curing effects of xenon flash lamp on ITO–Ag–ITO multilayer electrodes for high throughput transparent electronics
High-throughput transparent and flexible electronics are essential technologies for next-generation displays, semiconductors, and wearable bio-medical applications. However, to manufacture a high-quality transparent and flexible electrode, conventional annealing processes generally require 5 min or more at a high temperature condition of 300 °C or higher. This high thermal budget condition is not only difficult to apply to general polymer-based flexible substrates, but also results in low-throughput. Here, we report a high-quality transparent electrode produced with an extremely low thermal budget using Xe-flash lamp rapid photonic curing. Photonic curing is an extremely short time (~ μs) process, making it possible to induce an annealing effect of over 800 °C. The photonic curing effect was optimized by selecting the appropriate power density, the irradiation energy of the Xe-flash lamp, and Ag layer thickness. Rapid photonic curing produced an ITO–Ag–ITO electrode with a low sheet resistance of 6.5 ohm/sq, with a high luminous transmittance of 92.34%. The low thermal budget characteristics of the rapid photonic curing technology make it suitable for high-quality transparent electronics and high-throughput processes such as roll-to-roll.
Selective Surface Treatment Using Atmospheric Ar Plasma Jet for Aluminum‐doped Zinc Oxide Based Transparent and Flexible Electronics
Transparent and flexible electronics are emerging technologies with the potential to enable new applications. However, to ensure high‐performance transparent electronics, post‐processing such as thermal annealing and vacuum plasma treatment is necessary, which are difficult to apply to polymer‐based flexible substrates. This study analyzed the feasibility of applying selective Ar plasma jet treatment at atmospheric pressure to transparent flexible electronics. When atmospheric Ar plasma treatment is applied to transparent flexible aluminum‐doped zinc oxide (AZO), it showed a maximum 83.1% improvement in sheet resistance while maintaining a high transmittance performance, of over 70%. To verify the mechanism behind the surface treatment effect using atmospheric Ar plasma, comprehensive analyses are performed using atomic force microscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy, which confirmed that the effect is due to oxygen vacancy formation caused by ion bombardment and thermal diffusion. The application of atmospheric plasma treatment to a patterned transparent flexible AZO device resulted in a reduction in contact resistance, and it is confirmed that the performance improvement effects can be retained for >500 h by applying additional passivation. In this study, a high‐performance transparent flexible AZO electrode fabricated using a novel plasma jet‐based surface treatment technology that is applicable at room temperature and atmospheric pressure. Unlike conventional high‐temperature thermal annealing methods, the atmospheric plasma jet can be applied to flexible substrates and can improve the sheet resistance of AZO electrodes by up to 83.1%.
Argon and Oxygen Gas Flow Rate Dependency of Sputtering-Based Indium-Gallium-Zinc Oxide Thin-Film Transistors
Oxygen vacancies are a major factor that controls the electrical characteristics of the amorphous indium-gallium-zinc oxide transistor (a-IGZO TFT). Oxygen vacancies are affected by the composition ratio of the a-IGZO target and the injected oxygen flow rate. In this study, we fabricated three types of a-IGZO TFTs with different oxygen flow rates and then investigated changes in electrical characteristics. Atomic force microscopy (AFM) was performed to analyze the surface morphology of the a-IGZO films according to the oxygen gas rate. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis was performed to confirm changes in oxygen vacancies of a-IGZO films. The optimized a-IGZO TFT has enhanced electrical characteristics such as carrier mobility (μ) of 12.3 cm2/V·s, on/off ratio of 1.25 × 1010 A/A, subthreshold swing (S.S.) of 3.7 V/dec, and turn-on voltage (Vto) of −3 V. As a result, the optimized a-IGZO TFT has improved electrical characteristics with oxygen vacancies having the highest conductivity.
Selective DUV Femtosecond Laser Annealing for Electrical Property Modulation in NMOS Inverter
Amorphous indium gallium zinc oxide (a-IGZO) is widely used as an oxide semiconductor in the electronics industry due to its low leakage current and high field-effect mobility. However, a-IGZO suffers from notable limitations, including crystallization at temperatures above 600 °C and the high cost of indium. To address these issues, nitrogen-doped zinc oxynitride (ZnON), which can be processed at room temperature, has been proposed. Nitrogen in ZnON effectively reduces oxygen vacancies (VO), resulting in enhanced field-effect mobility and improved stability under positive bias stress (PBS) compared to IGZO. In this study, selective deep ultraviolet femtosecond (DUV fs) laser annealing was applied to the channel region of ZnON thin-film transistors (TFTs), enabling rapid threshold voltage (Vth) modulation within microseconds, without the need for vacuum processing. Based on the electrical characteristics of both Vth-modulated and pristine ZnON TFTs, an NMOS inverter was fabricated, demonstrating reliable performance. These results suggest that laser annealing is a promising technique, applicable to various logic circuits and electronic devices.
Spikoder: Dual‐Mode Graphene Neuron Circuit for Hardware Intelligence
Neuromorphic computing envisions the realization of a hardware neural network mimicking the brain's energy efficiency and rapid information processing. Leveraging the multifunctional capabilities of core neuromorphic building blocks offers an efficient approach to developing compact and intelligent hardware systems. This article demonstrates a novel technique to employ a graphene memristor‐based leaky integrate‐and‐fire circuit, which is hereby referred to as Spikoder. This circuit not only functions as a dynamic encoder transforming continuous input signals into spike sequences but also operates as a neuron circuit with reduced topological complexity. The circuit exhibits exceptional spike‐encoding performance, validated using spike‐encoded images from the Modified National Institute of Standards and Technology dataset. The effectiveness of this encoding technique is evaluated through experiments on single‐layer and double‐layer fully connected spiking neural networks (SNNs). The single‐layer SNN utilizing the dual‐mode neuron circuit achieves a high image recognition accuracy of 90.77%, while the implementation of a double‐layer SNN increases the test accuracy to 97.37%, further demonstrating its scalability for high‐level neuromorphic computing. This research highlights the possibility of using the hybrid encoder‐neuron circuit as an efficient and scalable solution for advanced neuromorphic computing hardware.
355 nm Nanosecond Ultraviolet Pulsed Laser Annealing Effects on Amorphous In-Ga-ZnO Thin Film Transistors
Bottom-gate thin-film transistors (TFTs) with n-type amorphous indium-gallium-zinc oxide (a-IGZO) active channels and indium-tin oxide (ITO) source/drain electrodes were fabricated. Then, an ultraviolet (UV) nanosecond pulsed laser with a wavelength of 355 nm was scanned to locally anneal the active channel at various laser powers. After laser annealing, negative shifts in the threshold voltages and enhanced on-currents were observed at laser powers ranging from 54 to 120 mW. The energy band gap and work function of a-IGZO extracted from the transmittance and ultraviolet photoelectron spectroscopy (UPS) measurement data confirm that different energy band structures for the ITO electrode/a-IGZO channel were established depending on the laser annealing conditions. Based on these observations, the electron injection mechanism from ITO electrodes to a-IGZO channels was analyzed. The results show that the selective laser annealing process can improve the electrical performance of the a-IGZO TFTs without any thermal damage to the substrate.
Highly Transparent Red Organic Light-Emitting Diodes with AZO/Ag/AZO Multilayer Electrode
Free-form factor optoelectronics is becoming more important for various applications. Specifically, flexible and transparent optoelectronics offers the potential to be adopted in wearable devices in displays, solar cells, or biomedical applications. However, current transparent electrodes are limited in conductivity and flexibility. This study aims to address these challenges and explore potential solutions. For the next-generation transparent conductive electrode, Al-doped zinc oxide (AZO) and silver (AZO/Ag/AZO) deposited by in-line magnetron sputtering without thermal treatment was investigated, and this transparent electrode was used as a transparent organic light-emitting diode (OLED) anode to maximize the transparency characteristics. The experiment and simulation involved adjusting the thickness of Ag and AZO and OLED structure to enhance the transmittance and device performance. The AZO/Ag/AZO with Ag of 12 nm and AZO of 32 nm thickness achieved the results of the highest figure of merit (FOM) (Φ550 = 4.65 mΩ−1) and lowest roughness. The full structure of transparent OLED (TrOLED) with AZO/Ag/AZO anode and Mg:Ag cathode reached 64.84% transmittance at 550 nm, and 300 cd/m2 at about 4 V. The results demonstrate the feasibility of adopting flexible substrates, such as PET, without the need for thermal treatment. This research provides valuable insights into the development of transparent and flexible electronic devices.
Effects of Insertion of Ag Mid-Layers on Laser Direct Ablation of Transparent Conductive ITO/Ag/ITO Multilayers: Role of Effective Absorption and Focusing of Photothermal Energy
From the viewpoint of the device performance, the fabrication and patterning of oxide–metal–oxide (OMO) multilayers (MLs) as transparent conductive oxide electrodes with a high figure of merit have been extensively investigated for diverse optoelectronic and energy device applications, although the issues of their general concerns about possible shortcomings, such as a more complicated fabrication process with increasing cost, still remain. However, the underlying mechanism by which a thin metal mid-layer affects the overall performance of prepatterned OMO ML electrodes has not been fully elucidated. In this study, indium tin oxide (ITO)/silver (Ag)/ITO MLs are fabricated using an in-line sputtering method for different Ag thicknesses on glass substrates. Subsequently, a Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, λ = 1064 nm) laser is employed for the direct ablation of the ITO/Ag/ITO ML films to pattern ITO/Ag/ITO ML electrodes. Analysis of the laser-patterned results indicate that the ITO/Ag/ITO ML films exhibit wider ablation widths and lower ablation thresholds than ITO single layer (SL) films. However, the dependence of Ag thickness on the laser patterning results of the ITO/Ag/ITO MLs is not observed, despite the difference in their absorption coefficients. The results show that the laser direct patterning of ITO/Ag/ITO MLs is primarily affected by rapid thermal heating, melting, and vaporization of the inserted Ag mid-layer, which has considerably higher thermal conductivity and absorption coefficients than the ITO layers. Simulation reveals the importance of the Ag mid-layer in the effective absorption and focusing of photothermal energy, thereby supporting the experimental observations. The laser-patterned ITO/Ag/ITO ML electrodes indicate a comparable optical transmittance, a higher electrical current density, and a lower resistance compared with the ITO SL electrode.
White Light-Emitting Flexible Displays with Quantum-Dot Film and Greenish-Blue Organic Light-Emitting Diodes
White organic light-emitting diodes (OLEDs) represent a significant technology in the display industry for the achievement of full color. However, sophisticated technologies are required for white light emission. In this paper, we developed a simple white light-emitting display device using a quantum-dot (QD) film and a greenish-blue OLED. The resulting QD-OLED produced a high-purity white color with a color temperature of 6000 K (CIEx,y = 0.32, 0.34) and achieved a maximum brightness of 14,638 cd/m2 at 7 V. This paper reports the fabrication of a white light-emitting QD-OLED with a straightforward structure and technology suitable for flexible displays.
Analyses of All Small Molecule-Based Pentacene/C60 Organic Photodiodes Using Vacuum Evaporation Method
The vacuum process using small molecule-based organic materials to make organic photodiodes (OPDIs) will provide many promising features, such as well-defined molecular structure, large scalability, process repeatability, and good compatibility for CMOS integration, compared to the widely used Solution process. We present the performance of planar heterojunction OPDIs based on pentacene as the electron donor and C60 as the electron acceptor. In these devices, MoO3 and BCP interfacial layers were interlaced between the electrodes and the active layer as the electron- and hole-blocking layer, respectively. Typically, BCP played a good role in suppressing the dark current by two orders higher than that without that layer. These devices showed a significant dependence of the performance on the thickness of the pentacene. In particular, with the pentacene thickness of 25 nm, an external quantum efficiency at the 360 nm wavelength according to the peak absorption of C60 was enhanced by 1.5 times due to a cavity effect, compared to that of the non-cavity device. This work shows the importance of a vacuum processing approach based on small molecules for OPDIs, and the possibility of improving the performance via the optimization of the device architecture.