Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
570
result(s) for
"Choi, Won-Suk"
Sort by:
Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2
by
Um, Jihye
,
Oh, Sol
,
Shin, Kyeong Seob
in
Betacoronavirus - genetics
,
Betacoronavirus - isolation & purification
,
colorimetric detection
2020
The previous outbreaks of SARS-CoV and MERS-CoV have led researchers to study the role of diagnostics in impediment of further spread and transmission. With the recent emergence of the novel SARS-CoV-2, the availability of rapid, sensitive, and reliable diagnostic methods is essential for disease control. Hence, we have developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the specific detection of SARS-CoV-2. The primer sets for RT-LAMP assay were designed to target the nucleocapsid gene of the viral RNA, and displayed a detection limit of 10
2
RNA copies close to that of qRT-PCR
.
Notably, the assay has exhibited a rapid detection span of 30 min combined with the colorimetric visualization. This test can detect specifically viral RNAs of the SARS-CoV-2 with no cross-reactivity to related coronaviruses, such as HCoV-229E, HCoV-NL63, HCoV-OC43, and MERS-CoV as well as human infectious influenza viruses (type B, H1N1pdm, H3N2, H5N1, H5N6, H5N8, and H7N9), and other respiratory disease-causing viruses (RSVA, RSVB, ADV, PIV, MPV, and HRV). Furthermore, the developed RT-LAMP assay has been evaluated using specimens collected from COVID-19 patients that exhibited high agreement to the qRT-PCR. Our RT-LAMP assay is simple to perform, less expensive, time-efficient, and can be used in clinical laboratories for preliminary detection of SARS-CoV-2 in suspected patients. In addition to the high sensitivity and specificity, this isothermal amplification conjugated with a single-tube colorimetric detection method may contribute to the public health responses and disease control, especially in the areas with limited laboratory capacities.
Journal Article
Environmental Contamination and Viral Shedding in MERS Patients During MERS-CoV Outbreak in South Korea
2016
Background. Although Middle East Respiratory Syndrome coronavirus (MERS-CoV) is characterized by a risk of nosocomial transmission, the detailed mode of transmission and period of virus shedding from infected patients are poorly understood. The aims of this study were to investigate the potential role of environmental contamination by MERS-CoV in healthcare settings and to define the period of viable virus shedding from MERS patients. Methods. We investigated environmental contamination from 4 patients in MERS-CoV units of 2 hospitals. MERS-CoV was detected by reverse transcription polymerase chain reaction (PCR) and viable virus was isolated by cultures. Results. Many environmental surfaces of MERS patient rooms, including points frequently touched by patients or healthcare workers, were contaminated by MERS-CoV. Viral RNA was detected up to five days from environmental surfaces following the last positive PCR from patients' respiratory specimens. MERS-CoV RNA was detected in samples from anterooms, medical devices, and air-ventilating equipment. In addition, MERS-CoV was isolated from environmental objects such as bed sheets, bedrails, IV fluid hangers, and X-ray devices. During the late clinical phase of MERS, viable virus could be isolated in 3 of the 4 enrolled patients on day 18 to day 25 after symptom onset. Conclusions. Most of touchable surfaces in MERS units were contaminated by patients and health care workers and the viable virus could shed through respiratory secretion from clinically fully recovered patients. These results emphasize the need for strict environmental surface hygiene practices, and sufficient isolation period based on laboratory results rather than solely on clinical symptoms.
Journal Article
Suggestion of a simpler and faster influenza-like illness surveillance system using 2014–2018 claims data in Korea
2021
Influenza is an important public health concern. We propose a new real-time influenza-like illness (ILI) surveillance system that utilizes a nationwide prospective drug utilization monitoring in Korea. We defined ILI-related claims as outpatient claims that contain both antipyretic and antitussive agents and calculated the weekly rate of ILI-related claims, which was compared to weekly ILI rates from clinical sentinel surveillance data during 2014–2018. We performed a cross-correlation analysis using Pearson’s correlation, time-series analysis to explore actual correlations after removing any dubious correlations due to underlying non-stationarity in both data sets. We used the moving epidemic method (MEM) to estimate an absolute threshold to designate potential influenza epidemics for the weeks with incidence rates above the threshold. We observed a strong correlation between the two surveillance systems each season. The absolute thresholds for the 4-years were 84.64 and 86.19 cases per 1000claims for claims data and 12.27 and 16.82 per 1000 patients for sentinel data. The epidemic patterns were more similar in the 2016–2017 and 2017–2018 seasons than the 2014–2015 and 2015–2016 seasons. ILI claims data can be loaded to a drug utilization review system in Korea to make an influenza surveillance system.
Journal Article
2023 Clinical Practice Guidelines for Diabetes Mellitus of the Korean Diabetes Association
2023
In May 2023, the Committee of Clinical Practice Guidelines of the Korean Diabetes Association published the revised clinical practice guidelines for Korean adults with diabetes and prediabetes. We incorporated the latest clinical research findings through a comprehensive systematic literature review and applied them in a manner suitable for the Korean population. These guidelines are designed for all healthcare providers nationwide, including physicians, diabetes experts, and certified diabetes educators who manage patients with diabetes or individuals at risk of developing diabetes. Based on recent changes in international guidelines and the results of a Korean epidemiological study, the recommended age for diabetes screening has been lowered. In collaboration with the relevant Korean medical societies, recently revised guidelines for managing hypertension and dyslipidemia in patients with diabetes have been incorporated into this guideline. An abridgment containing practical information on patient education and systematic management in the clinic was published separately.
Journal Article
Rapid and simple colorimetric detection of multiple influenza viruses infecting humans using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform
by
Shin, Kyeong Seob
,
Song, Min-Suk
,
Chun, Sungkun
in
Analysis
,
Avian influenza
,
Avian influenza viruses
2019
Background
In addition to seasonal influenza viruses recently circulating in humans, avian influenza viruses (AIVs) of H5N1, H5N6 and H7N9 subtypes have also emerged and demonstrated human infection abilities with high mortality rates. Although influenza viral infections are usually diagnosed using viral isolation and serological/molecular analyses, the cost, accessibility, and availability of these methods may limit their utility in various settings. The objective of this study was to develop and optimized a multiplex detection system for most influenza viruses currently infecting humans.
Methods
We developed and optimized a multiplex detection system for most influenza viruses currently infecting humans including two type B (both Victoria lineages and Yamagata lineages), H1N1, H3N2, H5N1, H5N6, and H7N9 using Reverse Transcriptional Loop-mediated Isothermal Amplification (RT-LAMP) technology coupled with a one-pot colorimetric visualization system to facilitate direct determination of results without additional steps. We also evaluated this multiplex RT-LAMP for clinical use using a total of 135 clinical and spiked samples (91 influenza viruses and 44 other human infectious viruses).
Results
We achieved rapid detection of seasonal influenza viruses (H1N1, H3N2, and Type B) and avian influenza viruses (H5N1, H5N6, H5N8 and H7N9) within an hour. The assay could detect influenza viruses with high sensitivity (i.e., from 100 to 0.1 viral genome copies), comparable to conventional RT-PCR-based approaches which would typically take several hours and require expensive equipment. This assay was capable of specifically detecting each influenza virus (Type B, H1N1, H3N2, H5N1, H5N6, H5N8 and H7N9) without cross-reactivity with other subtypes of AIVs or other human infectious viruses. Furthermore, 91 clinical and spiked samples confirmed by qRT-PCR were also detected by this multiplex RT-LAMP with 98.9% agreement. It was more sensitive than one-step RT-PCR approach (92.3%).
Conclusions
Results of this study suggest that our multiplex RT-LAMP assay may provide a rapid, sensitive, cost-effective, and reliable diagnostic method for identifying recent influenza viruses infecting humans, especially in locations without access to large platforms or sophisticated equipment.
Journal Article
Chiroptical Performances in Self-Assembled Hierarchical Nanosegregated Chiral Intermediate Phases Composed of Two Different Achiral Bent-Core Molecules
2022
In this paper, chiral intermediate phases composed of two achiral molecules are fabricated by utilizing nanophase separation and molecular hierarchical self-organization. An achiral bent-core guest molecule, exhibiting a calamitic nematic and a dark conglomerate phase according to the temperature, is mixed with another achiral bent-core host molecule possessing a helical nanofilament to separate the phases between them. Two nanosegregated phases are identified, and considerable chiroptical changes, such as circular dichroism and circularly polarized luminescence, are detected at the transition temperatures between the different nanophase-separated states. The nanosegregated chiral phase—wherein the helical nanofilament and dark conglomerate phases are phase-separated—exhibits the highest chiroptical intensities. The luminescence dissymmetry factor, |glum|, in this phase is amplified by an order of magnitude compared with that of another nanosegregated phase, wherein the helical nanofilament and nematic phases are phase-separated.
Journal Article
Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate
2023
Two types of binary mixtures were prepared. One consisted of a calamitic nematogen and bent-core molecule with a helical nanofilament, whereas the other contained a calamitic nematogen and bent-core molecule with a dark conglomerate. The chiroptical features of these two mixtures were investigated using polarized optical microscopy and circular dichroism. In addition, X-ray diffraction analysis was performed on the two binary mixtures. The chiroptical features of the two mixtures were remarkably different. One mixture showed enhanced chiroptical features, whereas the other did not show chiroptical features. This method may help in distinguishing between helical nanofilaments and dark conglomerates which originate from bent-core molecular systems.
Journal Article
Multilayer Haze-Assisted Luminescent Solar Concentrators for Enhanced Photovoltaic Performance
2025
Building-integrated photovoltaics (BIPVs) can benefit not only from transparent but also from opaque modules that maximize light capture. We present haze-assisted luminescent solar concentrators (HALSCs) that integrate scattering and luminescence in multilayer designs. Polymer-liquid crystal composites with embedded dyes form micron-scale domains that act as broadband Mie scattering centers, while the dye provides spectral conversion. Monte Carlo ray-tracing simulations and experiments reveal that edge-emitted intensity increases with haze thickness but saturates beyond a threshold; segmenting the same thickness into multiple thinner layers enables repeated scattering, markedly enhancing side-guided emission. When coupled with crystalline silicon solar cells, multilayer HALSCs converted this optical advantage into enhanced photocurrent, with triple-layer devices nearly doubling output relative to transparent controls. These findings establish opacity-luminescence coupling and multilayer haze engineering as effective design principles, positioning HALSCs as practical platforms for advanced BIPVs and optical energy-management systems.
Journal Article
Development of a SFTSV DNA vaccine that confers complete protection against lethal infection in ferrets
2019
Although the incidence of severe fever with thrombocytopenia syndrome virus (SFTSV) infection has increased from its discovery with a mortality rate of 10–20%, no effective vaccines are currently available. Here we describe the development of a SFTSV DNA vaccine, its immunogenicity, and its protective efficacy. Vaccine candidates induce both a neutralizing antibody response and multifunctional SFTSV-specific T cell response in mice and ferrets. When the vaccine efficacy is investigated in aged-ferrets that recapitulate fatal clinical symptoms, vaccinated ferrets are completely protected from lethal SFTSV challenge without developing any clinical signs. A serum transfer study reveals that anti-envelope antibodies play an important role in protective immunity. Our results suggest that Gn/Gc may be the most effective antigens for inducing protective immunity and non-envelope-specific T cell responses also can contribute to protection against SFTSV infection. This study provides important insights into the development of an effective vaccine, as well as corresponding immune parameters, to control SFTSV infection.
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus with no specific treatment or vaccine available. Here, the authors develop a DNA vaccine for SFTSV that is protective against lethal challenge in ferrets and show that anti-envelope antibodies are important for protection.
Journal Article
Control of the Induced Handedness of Helical Nanofilaments Employing Cholesteric Liquid Crystal Fields
2021
In this paper, a simple and powerful method to control the induced handedness of helical nanofilaments (HNFs) is presented. The nanofilaments are formed by achiral bent-core liquid crystal molecules employing a cholesteric liquid crystal field obtained by doping a rod-like nematogen with a chiral dopant. Homochiral helical nanofilaments are formed in the nanophase-separated helical nanofilament/cholesteric phase from a mixture with a cholesteric phase. This cholesteric phase forms at a temperature higher than the temperature at which the helical nanofilament in a bent-core molecule appears. Under such conditions, the cholesteric liquid crystal field acts as a driving force in the nucleation of HNFs, realizing a perfectly homochiral domain consisting of identical helical nanofilament handedness.
Journal Article