Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
125
result(s) for
"Chomont, Nicolas"
Sort by:
PD-1 blockade potentiates HIV latency reversal ex vivo in CD4+ T cells from ART-suppressed individuals
2019
HIV persists in latently infected CD4
+
T cells during antiretroviral therapy (ART). Immune checkpoint molecules, including PD-1, are preferentially expressed at the surface of persistently infected cells. However, whether PD-1 plays a functional role in HIV latency and reservoir persistence remains unknown. Using CD4
+
T cells from HIV-infected individuals, we show that the engagement of PD-1 inhibits viral production at the transcriptional level and abrogates T-cell receptor (TCR)-induced HIV reactivation in latently infected cells. Conversely, PD-1 blockade with the monoclonal antibody pembrolizumab enhances HIV production in combination with the latency reversing agent bryostatin without increasing T cell activation. Our results suggest that the administration of immune checkpoint blockers to HIV-infected individuals on ART may facilitate latency disruption.
The immune checkpoint molecule PD-1 is expressed on a fraction of CD4
+
T cells latently infected with HIV, but whether PD-1 plays a functional role in reservoir persistence remains unknown. Here, Fromentin et al. show that PD-1 blockade potentiates latency reversal ex vivo in CD4
+
T cells from ART suppressed individuals.
Journal Article
Single-cell TCR sequencing reveals phenotypically diverse clonally expanded cells harboring inducible HIV proviruses during ART
2020
Clonal expansions occur in the persistent HIV reservoir as shown by the duplication of proviral integration sites. However, the source of the proliferation of HIV-infected cells remains unclear. Here, we analyze the TCR repertoire of single HIV-infected cells harboring translation-competent proviruses in longitudinal samples from eight individuals on antiretroviral therapy (ART). When compared to uninfected cells, the TCR repertoire of reservoir cells is heavily biased: expanded clonotypes are present in all individuals, account for the majority of reservoir cells and are often maintained over time on ART. Infected T cell clones are detected at low frequencies in the long-lived central memory compartment and overrepresented in the most differentiated memory subsets. Our results indicate that clonal expansions highly contribute to the persistence of the HIV reservoir and suggest that reservoir cells displaying a differentiated phenotype are the progeny of infected central memory cells undergoing antigen-driven clonal expansion during ART.
The cause of clonal expansions in the HIV reservoir remains unclear. Here, Gantner et al. perform single-cell TCR sequencing on longitudinal samples from eight individuals on antiretroviral therapy and find that antigens inducing clonal expansions of memory cells are major contributors to the HIV reservoir.
Journal Article
In-depth single-cell analysis of translation-competent HIV-1 reservoirs identifies cellular sources of plasma viremia
2021
Clonal expansion of HIV-infected cells contributes to the long-term persistence of the HIV reservoir in ART-suppressed individuals. However, the contribution from cell clones that harbor inducible proviruses to plasma viremia is poorly understood. Here, we describe a single-cell approach to simultaneously sequence the TCR, integration sites and proviral genomes from translation-competent reservoir cells, called STIP-Seq. By applying this approach to blood samples from eight participants, we show that the translation-competent reservoir mainly consists of proviruses with short deletions at the 5’-end of the genome, often involving the major splice donor site. TCR and integration site sequencing reveal that cell clones with predicted pathogen-specificity can harbor inducible proviruses integrated into cancer-related genes. Furthermore, we find several matches between proviruses retrieved with STIP-Seq and plasma viruses obtained during ART and upon treatment interruption, suggesting that STIP-Seq can capture clones that are responsible for low-level viremia or viral rebound.
To provide in depth characterization of HIV reservoir cells, the authors here develop a single-cell approach to simultaneously sequence TCR, integration sites and proviral genomes, called STIP-Seq, and show that the translation-competent reservoir mainly consists of proviruses with short deletions at the 5’-end of the genome.
Journal Article
Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection
by
Pagliuzza, Amélie
,
Baxter, Amy E.
,
Massanella, Marta
in
Acquired immune deficiency syndrome
,
AIDS
,
Analysis
2019
The phenotypic characterization of the cells in which HIV persists during antiretroviral therapy (ART) remains technically challenging. We developed a simple flow cytometry-based assay to quantify and characterize infected cells producing HIV proteins during untreated and treated HIV infection. By combining two antibodies targeting the HIV capsid in a standard intracellular staining protocol, we demonstrate that p24-producing cells can be detected with high specificity and sensitivity in the blood from people living with HIV. In untreated individuals, the frequency of productively infected cells strongly correlated with plasma viral load. Infected cells preferentially displayed a transitional memory phenotype and were enriched in Th17, peripheral Tfh and regulatory T cells subsets. These cells also preferentially expressed activation markers (CD25, HLA-DR, Ki67), immune checkpoint molecules (PD-1, LAG-3, TIGIT, Tim-3) as well as the integrins α4β7 and α4β1. In virally suppressed individuals on ART, p24-producing cells were only detected upon stimulation (median frequency of 4.3 p24+ cells/106 cells). These measures correlated with other assays assessing the size of the persistent reservoir including total and integrated HIV DNA, Tat/rev Induced Limiting Dilution Assay (TILDA) and quantitative viral outgrowth assay (QVOA). In ART-suppressed individuals, p24-producing cells preferentially displayed a transitional and effector memory phenotype, and expressed immune checkpoint molecules (PD-1, TIGIT) as well as the integrin α4β1. Remarkably, α4β1 was expressed by more than 70% of infected cells both in untreated and ART-suppressed individuals. Altogether, these results highlight a broad diversity in the phenotypes of HIV-infected cells in treated and untreated infection and suggest that strategies targeting multiple and phenotypically distinct cellular reservoirs will be needed to exert a significant impact on the size of the reservoir.
Journal Article
CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART
by
Hartogensis, Wendy
,
Lawani, Mariam B.
,
Lewin, Sharon R.
in
Acquired immune deficiency syndrome
,
AIDS
,
Anti-Retroviral Agents
2016
HIV persists in a small pool of latently infected cells despite antiretroviral therapy (ART). Identifying cellular markers expressed at the surface of these cells may lead to novel therapeutic strategies to reduce the size of the HIV reservoir. We hypothesized that CD4+ T cells expressing immune checkpoint molecules would be enriched in HIV-infected cells in individuals receiving suppressive ART. Expression levels of 7 immune checkpoint molecules (PD-1, CTLA-4, LAG-3, TIGIT, TIM-3, CD160 and 2B4) as well as 4 markers of HIV persistence (integrated and total HIV DNA, 2-LTR circles and cell-associated unspliced HIV RNA) were measured in PBMCs from 48 virally suppressed individuals. Using negative binomial regression models, we identified PD-1, TIGIT and LAG-3 as immune checkpoint molecules positively associated with the frequency of CD4+ T cells harboring integrated HIV DNA. The frequency of CD4+ T cells co-expressing PD-1, TIGIT and LAG-3 independently predicted the frequency of cells harboring integrated HIV DNA. Quantification of HIV genomes in highly purified cell subsets from blood further revealed that expressions of PD-1, TIGIT and LAG-3 were associated with HIV-infected cells in distinct memory CD4+ T cell subsets. CD4+ T cells co-expressing the three markers were highly enriched for integrated viral genomes (median of 8.2 fold compared to total CD4+ T cells). Importantly, most cells carrying inducible HIV genomes expressed at least one of these markers (median contribution of cells expressing LAG-3, PD-1 or TIGIT to the inducible reservoir = 76%). Our data provide evidence that CD4+ T cells expressing PD-1, TIGIT and LAG-3 alone or in combination are enriched for persistent HIV during ART and suggest that immune checkpoint blockers directed against these receptors may represent valuable tools to target latently infected cells in virally suppressed individuals.
Journal Article
First-in-human immunoPET imaging of HIV-1 infection using 89Zr-labeled VRC01 broadly neutralizing antibody
2022
A major obstacle to achieving long-term antiretroviral (ART) free remission or functional cure of HIV infection is the presence of persistently infected cells that establish a long-lived viral reservoir. HIV largely resides in anatomical regions that are inaccessible to routine sampling, however, and non-invasive methods to understand the longitudinal tissue-wide burden of HIV persistence are urgently needed. Positron emission tomography (PET) imaging is a promising strategy to identify and characterize the tissue-wide burden of HIV. Here, we assess the efficacy of using immunoPET imaging to characterize HIV reservoirs and identify anatomical foci of persistent viral transcriptional activity using a radiolabeled HIV Env-specific broadly neutralizing antibody,
89
Zr-VRC01, in HIV-infected individuals with detectable viremia and on suppressive ART compared to uninfected controls (NCT03729752). We also assess the relationship between PET tracer uptake in tissues and timing of ART initiation and direct HIV protein expression in CD4 T cells obtained from lymph node biopsies. We observe significant increases in
89
Zr-VRC01 uptake in various tissues (including lymph nodes and gut) in HIV-infected individuals with detectable viremia (
N
= 5) and on suppressive ART (
N
= 5) compared to uninfected controls (
N
= 5). Importantly, PET tracer uptake in inguinal lymph nodes in viremic and ART-suppressed participants significantly and positively correlates with HIV protein expression measured directly in tissue. Our strategy may allow non-invasive longitudinal characterization of residual HIV infection and lays the framework for the development of immunoPET imaging in a variety of other infectious diseases.
Here, the authors apply positron emission tomography (PET) imaging to visualize HIV tissue-wide burden in infected individuals using a radiolabeled broadly neutralizing antibody,
89
Zr-VRC01, and show that PET tracer lymph node uptake positively correlates with HIV protein levels measured directly from cells obtained from these tissues. This strategy may allow non-invasive characterization of residual HIV infection in the setting of therapeutic interventions.
Journal Article
The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency
by
Kessing, Cari F.
,
Chomont, Nicolas
,
Mousseau, Guillaume
in
Anti-HIV Agents - metabolism
,
Antiretroviral therapy
,
Antiviral agents
2015
Antiretroviral therapy (ART) inhibits HIV-1 replication, but the virus persists in latently infected resting memory CD4 + T cells susceptible to viral reactivation. The virus-encoded early gene product Tat activates transcription of the viral genome and promotes exponential viral production. Here we show that the Tat inhibitor didehydro-cortistatin A (dCA), unlike other antiretrovirals, reduces residual levels of viral transcription in several models of HIV latency, breaks the Tat-mediated transcriptional feedback loop, and establishes a nearly permanent state of latency, which greatly diminishes the capacity for virus reactivation. Importantly, treatment with dCA induces inactivation of viral transcription even after its removal, suggesting that the HIV promoter is epigenetically repressed. Critically, dCA inhibits viral reactivation upon CD3/CD28 or prostratin stimulation of latently infected CD4 + T cells from HIV-infected subjects receiving suppressive ART. Our results suggest that inclusion of a Tat inhibitor in current ART regimens may contribute to a functional HIV-1 cure by reducing low-level viremia and preventing viral reactivation from latent reservoirs. IMPORTANCE Antiretroviral therapy (ART) reduces HIV-1 replication to very low levels, but the virus persists in latently infected memory CD4 + T cells, representing a long-lasting source of resurgent virus upon ART interruption. Based on the mode of action of didehydro-cortistatin A (dCA), a Tat-dependent transcription inhibitor, our work highlights an alternative approach to current HIV-1 eradication strategies to decrease the latent reservoir. In our model, dCA blocks the Tat feedback loop initiated after low-level basal reactivation, blocking transcriptional elongation and hence viral production from latently infected cells. Therefore, dCA combined with ART would be aimed at delaying or halting ongoing viral replication, reactivation, and replenishment of the latent viral reservoir. Thus, the latent pool of cells in an infected individual would be stabilized, and death of the long-lived infected memory T cells would result in a continuous decay of this pool over time, possibly culminating in the long-awaited sterilizing cure. Antiretroviral therapy (ART) reduces HIV-1 replication to very low levels, but the virus persists in latently infected memory CD4 + T cells, representing a long-lasting source of resurgent virus upon ART interruption. Based on the mode of action of didehydro-cortistatin A (dCA), a Tat-dependent transcription inhibitor, our work highlights an alternative approach to current HIV-1 eradication strategies to decrease the latent reservoir. In our model, dCA blocks the Tat feedback loop initiated after low-level basal reactivation, blocking transcriptional elongation and hence viral production from latently infected cells. Therefore, dCA combined with ART would be aimed at delaying or halting ongoing viral replication, reactivation, and replenishment of the latent viral reservoir. Thus, the latent pool of cells in an infected individual would be stabilized, and death of the long-lived infected memory T cells would result in a continuous decay of this pool over time, possibly culminating in the long-awaited sterilizing cure.
Journal Article
Persistent, Albeit Reduced, Chronic Inflammation in Persons Starting Antiretroviral Therapy in Acute HIV Infection
by
Krebs, Shelly J.
,
Douek, Daniel C.
,
Fletcher, James L.
in
Adult
,
Antiretroviral agents
,
Antiretroviral drugs
2017
Background. Serious non-AIDS events cause substantial disease and death despite human immunodeficiency virus (HIV) suppression with antiretroviral therapy (ART). Biomarkers of inflammation, coagulation cascade activation, and fibrosis predict these end-organ events. We aimed to determine whether ART initiation during acute HIV infection would attenuate changes in these biomarker levels. Methods. Plasma samples were obtained from participants starting ART during acute or chronic HIV infection and from HIV-uninfected participants from Bangkok, Thailand. Biomarkers of inflammation (C-reactive protein [CRP], interleukin 6, soluble interleukin 6 receptor [sIL-6R], soluble gp130, tumor necrosis factor [TNF]), enterocyte turnover (intestinal fatty acid binding protein [I-FABP]), lipopolysaccharide-induced monocyte activation (soluble CD14 [sCD14]), coagulation cascade activation [D-dimer], and fibrosis (hyaluronic acid [HA]) were measured at baseline and through 96 weeks of ART. Results. CRP, TNF, sIL-6R, I-FABP, sCD14, D-dimer, and HA levels were elevated in acute HIV infection. Early ART was associated with increased I-FABP levels but normalization of TNF, sIL-6R, and D-dimer levels. CRP, sCD14, and HA levels decreased during ART but remained elevated compared with HIV-uninfected participants. Higher sCD14, CRP, and D-dimer levels were associated with higher peripheral blood mononuclear cell and gut integrated HIV DNA levels. Decreases in sCD14 and CRP levels were correlated with increases in CD4 T-cell counts. Conclusions. ART initiated in early acute HIV infection was associated with normalization of the coagulation cascade and several systemic inflammatory biomarkers, but the acute-phase response, enterocyte turnover, monocyte activation, and fibrosis biomarkers remained elevated. Additional interventions to attenuate inflammation may be needed to optimize clinical outcomes in persons with HIV infection.
Journal Article
The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo
by
Fromentin, Remi
,
Graversen, Mette E.
,
Nissen, Sara K.
in
Acetylation - drug effects
,
Acquired immune deficiency syndrome
,
Adult
2015
Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7–7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1–2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir.
clinicaltrials.gov NTC02092116.
Journal Article
The HIV-1 proviral landscape reveals that Nef contributes to HIV-1 persistence in effector memory CD4+ T cells
by
Bacchus-Souffan, Charline
,
Tong, Orion
,
Hiener, Bonnie
in
AIDS/HIV
,
CD4-Positive T-Lymphocytes
,
DNA, Viral - genetics
2022
Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target.
Journal Article