Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Choutri, Kheireddine"
Sort by:
Path Planning and Formation Control for UAV-Enabled Mobile Edge Computing Network
Recent developments in unmanned aerial vehicles (UAVs) have led to the introduction of a wide variety of innovative applications, especially in the Mobile Edge Computing (MEC) field. UAV swarms are suggested as a promising solution to cope with the issues that may arise when connecting Internet of Things (IoT) applications to a fog platform. We are interested in a crucial aspect of designing a swarm of UAVs in this work, which is the coordination of swarm agents in complicated and unknown environments. Centralized leader–follower formations are one of the most prevalent architectural designs in the literature. In the event of a failed leader, however, the entire mission is canceled. This paper proposes a framework to enable the use of UAVs under different MEC architectures, overcomes the drawbacks of centralized architectures, and improves their overall performance. The most significant contribution of this research is the combination of distributed formation control, online leader election, and collaborative obstacle avoidance. For the initial phase, the optimal path between departure and arrival points is generated, avoiding obstacles and agent collisions. Next, a quaternion-based sliding mode controller is designed for formation control and trajectory tracking. Moreover, in the event of a failed leader, the leader election phase allows agents to select the most qualified leader for the formation. Multiple possible scenarios simulating real-time applications are used to evaluate the framework. The obtained results demonstrate the capability of UAVs to adapt to different MEC architectures under different constraints. Lastly, a comparison is made with existing structures to demonstrate the effectiveness, safety, and durability of the designed framework.
Vision-Based UAV Detection and Localization to Indoor Positioning System
In recent years, the technological landscape has undergone a profound metamorphosis catalyzed by the widespread integration of drones across diverse sectors. Essential to the drone manufacturing process is comprehensive testing, typically conducted in controlled laboratory settings to uphold safety and privacy standards. However, a formidable challenge emerges due to the inherent limitations of GPS signals within indoor environments, posing a threat to the accuracy of drone positioning. This limitation not only jeopardizes testing validity but also introduces instability and inaccuracies, compromising the assessment of drone performance. Given the pivotal role of precise GPS-derived data in drone autopilots, addressing this indoor-based GPS constraint is imperative to ensure the reliability and resilience of unmanned aerial vehicles (UAVs). This paper delves into the implementation of an Indoor Positioning System (IPS) leveraging computer vision. The proposed system endeavors to detect and localize UAVs within indoor environments through an enhanced vision-based triangulation approach. A comparative analysis with alternative positioning methodologies is undertaken to ascertain the efficacy of the proposed system. The results obtained showcase the efficiency and precision of the designed system in detecting and localizing various types of UAVs, underscoring its potential to advance the field of indoor drone navigation and testing.
A Multi-Lingual Speech Recognition-Based Framework to Human-Drone Interaction
In recent years, human–drone interaction has received increasing interest from the scientific community. When interacting with a drone, humans assume a variety of roles, the nature of which are determined by the drone’s application and degree of autonomy. Common methods of controlling drone movements include by RF remote control and ground control station. These devices are often difficult to manipulate and may even require some training. An alternative is to use innovative methods called natural user interfaces that allow users to interact with drones in an intuitive manner using speech. However, using only one language of interacting may limit the number of users, especially if different languages are spoken in the same region. Moreover, environmental and propellers noise make speech recognition a complicated task. The goal of this work is to use a multilingual speech recognition system that includes English, Arabic, and Amazigh to control the movement of drones. The reason for selecting these languages is that they are widely spoken in many regions, particularly in the Middle East and North Africa (MENA) zone. To achieve this goal, a two-stage approach is proposed. During the first stage, a deep learning based model for multilingual speech recognition is designed. Then, the developed model is deployed in real settings using a quadrotor UAV. The network was trained using 38,850 records including commands and unknown words mixed with noise to improve robustness. An average class accuracy of more than 93% has been achieved. After that, experiments were conducted involving 16 participants giving voice commands in order to test the efficiency of the designed system. The achieved accuracy is about 93.76% for English recognition and 88.55%, 82.31% for Arabic and Amazigh, respectively. Finally, hardware implementation of the designed system on a quadrotor UAV was made. Real time tests have shown that the approach is very promising as an alternative form of human–drone interaction while offering the benefit of control simplicity.
Fire Detection and Geo-Localization Using UAV’s Aerial Images and Yolo-Based Models
The past decade has witnessed a growing demand for drone-based fire detection systems, driven by escalating concerns about wildfires exacerbated by climate change, as corroborated by environmental studies. However, deploying existing drone-based fire detection systems in real-world operational conditions poses practical challenges, notably the intricate and unstructured environments and the dynamic nature of UAV-mounted cameras, often leading to false alarms and inaccurate detections. In this paper, we describe a two-stage framework for fire detection and geo-localization. The key features of the proposed work included the compilation of a large dataset from several sources to capture various visual contexts related to fire scenes. The bounding boxes of the regions of interest were labeled using three target levels, namely fire, non-fire, and smoke. The second feature was the investigation of YOLO models to undertake the detection and localization tasks. YOLO-NAS was retained as the best performing model using the compiled dataset with an average mAP50 of 0.71 and an F1_score of 0.68. Additionally, a fire localization scheme based on stereo vision was introduced, and the hardware implementation was executed on a drone equipped with a Pixhawk microcontroller. The test results were very promising and showed the ability of the proposed approach to contribute to a comprehensive and effective fire detection system.
Multi-layered optimal navigation system for quadrotor UAV
Purpose This paper aims to propose a new multi-layered optimal navigation system that jointly optimizes the energy consumption, improves the robustness and raises the performance of a quadrotor unmanned aerial vehicle (UAV). Design/methodology/approach The proposed system is designed as a multi-layered system. First, the control architecture layer links the input and the output spaces via quaternion-based differential flatness equations. Then, the trajectory generation layer determines the optimal reference path and avoids obstacles to secure the UAV from collisions. Finally, the control layer allows the quadrotor to track the generated path and guarantees the stability using a double loop non-linear optimal backstepping controller (OBS). Findings All the obtained results are confirmed using several scenarios in different situations to prove the accuracy, energy optimization and the robustness of the designed system. Practical implications The proposed controllers are easily implementable on-board and are computationally efficient. Originality/value The originality of this research is the design of a multi-layered optimal navigation system for quadrotor UAV. The proposed control architecture presents a direct relation between the states and their derivatives, which then simplifies the trajectory generation problem. Furthermore, the derived differentially flat equations allow optimization to occur within the output space as opposed to the control space. This is beneficial because constraints such as obstacle avoidance occur in the output space; hence, the computation time for constraint handling is reduced. For the OBS, the novelty is that all controller parameters are derived using the multi-objective genetic algorithm (MO-GA) that optimizes all the quadrotor state’s cost functions jointly.
Real-Time Implementation of Quadrotor UAV Control System Based on a Deep Reinforcement Learning Approach
The popularity of quadrotor Unmanned Aerial Vehicles (UAVs) stems from their simple propulsion systems and structural design. However, their complex and nonlinear dynamic behavior presents a significant challenge for control, necessitating sophisticated algorithms to ensure stability and accuracy in flight. Various strategies have been explored by researchers and control engineers, with learning-based methods like reinforcement learning, deep learning, and neural networks showing promise in enhancing the robustness and adaptability of quadrotor control systems. This paper investigates a Reinforcement Learning (RL) approach for both high and low-level quadrotor control systems, focusing on attitude stabilization and position tracking tasks. A novel reward function and actor-critic network structures are designed to stimulate high-order observable states, improving the agent’s understanding of the quadrotor’s dynamics and environmental constraints. To address the challenge of RL hyperparameter tuning, a new framework is introduced that combines Simulated Annealing (SA) with a reinforcement learning algorithm, specifically Simulated Annealing-Twin Delayed Deep Deterministic Policy Gradient (SA-TD3). This approach is evaluated for path-following and stabilization tasks through comparative assessments with two commonly used control methods: Backstepping and Sliding Mode Control (SMC). While the implementation of the well-trained agents exhibited unexpected behavior during real-world testing, a reduced neural network used for altitude control was successfully implemented on a Parrot Mambo mini drone. The results showcase the potential of the proposed SA-TD3 framework for real-world applications, demonstrating improved stability and precision across various test scenarios and highlighting its feasibility for practical deployment.
Leveraging Large Language Models for Real-Time UAV Control
As drones become increasingly integrated into civilian and industrial domains, the demand for natural and accessible control interfaces continues to grow. Conventional manual controllers require technical expertise and impose cognitive overhead, limiting their usability in dynamic and time-critical scenarios. To address these limitations, this paper presents a multilingual voice-driven control framework for quadrotor drones, enabling real-time operation in both English and Arabic. The proposed architecture combines offline Speech-to-Text (STT) processing with large language models (LLMs) to interpret spoken commands and translate them into executable control code. Specifically, Vosk is employed for bilingual STT, while Google Gemini provides semantic disambiguation, contextual inference, and code generation. The system is designed for continuous, low-latency operation within an edge–cloud hybrid configuration, offering an intuitive and robust human–drone interface. While speech recognition and safety validation are processed entirely offline, high-level reasoning and code generation currently rely on cloud-based LLM inference. Experimental evaluation demonstrates an average speech recognition accuracy of 95% and end-to-end command execution latency between 300 and 500 ms, validating the feasibility of reliable, multilingual, voice-based UAV control. This research advances multimodal human–robot interaction by showcasing the integration of offline speech recognition and LLMs for adaptive, safe, and scalable aerial autonomy.
CircleVis: A Visualization Tool for Circular Labeling Arrangements and Overlap Removal
Information visualization refers to the practice of representing data in a meaningful, visual way that users can interpret and easily comprehend. Geometric or visual encoding shapes such as circles, rectangles, and bars have grown in popularity in data visualization research over time. Circles are a common shape used by domain experts to solve real-world problems and analyze data. As a result, data can be encoded using a simple circle with a set of labels associated with an arc or portion of the circle. Labels can then be arranged in various ways based on human perception (easy to read) or by optimizing the available space around the circle. However, overlaps can occur in one or more arrangements. This paper proposes CircleVis, a new visualization tool for label arrangement and overlap removal in circle visual encoding. First, a mathematical model is presented in order to formulate existing arrangements such as angular, path, and linear. Furthermore, based on user interaction, a new arrangement approach is proposed to optimize available space in each circle arc and delete label overlaps. Finally, users test and evaluate the designed tool using the COVID-19 dataset for validation purposes. The obtained results demonstrate the efficacy of the proposed method for label arrangement and overlapping removal in circular layout.
Visual Analytics Using Machine Learning for Transparency Requirements
Problem solving applications require users to exercise caution in their data usage practices. Prior to installing these applications, users are encouraged to read and comprehend the terms of service, which address important aspects such as data privacy, processes, and policies (referred to as information elements). However, these terms are often lengthy and complex, making it challenging for users to fully grasp their content. Additionally, existing transparency analytics tools typically rely on the manual extraction of information elements, resulting in a time-consuming process. To address these challenges, this paper proposes a novel approach that combines information visualization and machine learning analyses to automate the retrieval of information elements. The methodology involves the creation and labeling of a dataset derived from multiple software terms of use. Machine learning models, including naïve Bayes, BART, and LSTM, are utilized for the classification of information elements and text summarization. Furthermore, the proposed approach is integrated into our existing visualization tool TranspVis to enable the automatic detection and display of software information elements. The system is thoroughly evaluated using a database-connected tool, incorporating various metrics and expert opinions. The results of our study demonstrate the promising potential of our approach, serving as an initial step in this field. Our solution not only addresses the challenge of extracting information elements from complex terms of service but also provides a foundation for future research in this area.
TrajectoryVis: a visual approach to explore movement trajectories
Social networks are a dominant data source for sharing, participation, and exchanging information. For example, Twitter is a microblogging site that enables users to express opinions by transmitting brief messages (i.e., Tweets). Tweets can be used to extract information on users’ movements or trajectories over time. Information visualization (InfoVis) is helpful to understand, analyze, and make decisions about these trajectories. To better understand and compare existing visual encoding methods in InfoVis, we propose TrajectoryVis , a generic trajectory visualization tool to represent social network datasets (e.g., Twitter). Individual and aggregated trajectories can be visualized using different visual coding approaches. Our approach is assessed using a user and a COVID-19 case study to prove its effectiveness.