Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
65 result(s) for "Chris van der Merwe"
Sort by:
The epidermal cell structure of the secondary pollen presenter in Vangueria infausta (Rubiaceae: Vanguerieae) suggests a functional association with protruding Onci in pollen grains
Secondary pollen presentation is a well-known phenomenon in the Rubiaceae with particularly conspicuous pollen presenters occurring in the tribe Vanguerieae. These knob-like structures are formed by a modification of the upper portion of the style and stigma, together known as the stylar head complex. In the flower bud and shortly before anthesis, the anthers surrounding the stylar head complex dehisce and release pollen grains which adhere to the pollen presenter. The epidermal cells of the pollen presenter facing the anthers are radially elongated with a characteristic wall thickening encircling the anticlinal walls of each cell towards the distal end. These cells were studied in the pollen presenter of Vangueria infausta using electron and light microscopy in conjunction with histochemical tests and immunohistochemical methods. Other prominent thickenings of the cell wall were also observed on the distal and proximal walls. All these thickenings were found to be rich in pectin and possibly xyloglucan. The terms ‘‘thickenings of Igersheim’’ and ‘‘bands of Igersheim’’ are proposed to refer, respectively, to these wall structures in general and those encircling the anticlinal walls of each cell near the distal end. The epidermal cells have an intricate ultrastructure with an abundance of organelles, including smooth and rough endoplasmic reticulum, Golgi apparatus, mitochondria and secretory vesicles. This indicates that these cells are likely to have an active physiological role. The pollen grains possess prominent protruding onci and observations were made on their structure and development. Walls of the protruding onci are also rich in pectin. Pectins are hydrophilic and known to be involved in the dehydration and rehydration of pollen grains. We hypothesise that the thickenings of Igersheim, as well as the protruding onci of the pollen grains, are functionally associated and part of the adaptive syndrome of secondary pollen presentation, at least in the Vanguerieae.
Structural evidence in Plectroniella armata (Rubiaceae) for possible material exchange between domatia and mites
Domatia are small structures on the lower surface of a leaf, usually taking the form of cavities, pouches, domes with an opening, or hairs (or a combination of these), and located in the axils between the main veins. They are found in many dicotyledons including certain members of the Rubiaceae. As part of an ongoing study of selected southern African members of the tribe Vanguerieae of this family, their structure in transverse section was investigated. In some taxa, such as Plectroniella armata, light microscopic (LM) observations revealed large numbers of stomata in the domatia as well as a number of channel-like structures extending across the cuticle toward the cavity of the domatia. The cuticle of the epidermis lining the domatia also appeared thicker than in other parts of the leaves. The epidermis in P. armata was also examined using transmission electron microscopy (TEM). Domatia have been shown to house mainly mites, many of which are predatory or fungivorous, in a symbiotic (mutualistic) relationship with the plant. To date, much research has focussed on the role of domatia in providing shelter for various organisms, their eggs and their young. However, the TEM study revealed the apparent ‘‘channels’’ and thick cuticle seen under LM to be electron dense non-cellulosic branching fibrils within pronounced, often closely spaced cuticular folds. The functional significance of these fibrils and folds requires further investigation. Folding of cell walls and membranes at ultrastructural level is usually functionally associated with an increased surface area to facilitate active exchange of compounds/metabolites. This may indicate that translocation of substances and/or other forms of communication is possible between the domatium and its inhabitants. This therefore suggests a far more active role for the leaf in the symbiotic relationship than was previously thought. More work is required to test such a possibility.
Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
The anatomical localization of caffeine within young Camellia sinensis leaves was investigated using immunohistochemical methods and confocal scanning laser microscopy. Preliminary fixation experiments were conducted with young C. sinensis leaves to determine which fixation procedure retained caffeine the best as determined by high-performance liquid chromatography analysis. High pressure freezing, freeze substitution, and embedding in resin was deemed the best protocol as it retained most of the caffeine and allowed for the samples to be sectioned with ease. Immunohistochemical localization with primary anti-caffeine antibodies and conjugated secondary antibodies on leaf sections proved at the tissue level that caffeine was localized and accumulated within vascular bundles, mainly the precursor phloem. With the use of a pressure bomb, xylem sap was collected using a micro syringe. The xylem sap was analyzed by thin-layer chromatography and the presence of caffeine was determined. We hypothesize that caffeine is synthesized in the chloroplasts of photosynthetic cells and transported to vascular bundles where it acts as a chemical defense against various pathogens and predators. Complex formation of caffeine with chlorogenic acid is also discussed as this may also help explain caffeine's localization.
The Epidermal Cell Structure of the Secondary Pollen Presenter in Vangueria infausta
Secondary pollen presentation is a well-known phenomenon in the Rubiaceae with particularly conspicuous pollen presenters occurring in the tribe Vanguerieae. These knob-like structures are formed by a modification of the upper portion of the style and stigma, together known as the stylar head complex. In the flower bud and shortly before anthesis, the anthers surrounding the stylar head complex dehisce and release pollen grains which adhere to the pollen presenter. The epidermal cells of the pollen presenter facing the anthers are radially elongated with a characteristic wall thickening encircling the anticlinal walls of each cell towards the distal end. These cells were studied in the pollen presenter of Vangueria infausta using electron and light microscopy in conjunction with histochemical tests and immunohistochemical methods. Other prominent thickenings of the cell wall were also observed on the distal and proximal walls. All these thickenings were found to be rich in pectin and possibly xyloglucan. The terms \"thickenings of Igersheim\" and \"bands of Igersheim\" are proposed to refer, respectively, to these wall structures in general and those encircling the anticlinal walls of each cell near the distal end. The epidermal cells have an intricate ultrastructure with an abundance of organelles, including smooth and rough endoplasmic reticulum, Golgi apparatus, mitochondria and secretory vesicles. This indicates that these cells are likely to have an active physiological role. The pollen grains possess prominent protruding onci and observations were made on their structure and development. Walls of the protruding onci are also rich in pectin. Pectins are hydrophilic and known to be involved in the dehydration and rehydration of pollen grains. We hypothesise that the thickenings of Igersheim, as well as the protruding onci of the pollen grains, are functionally associated and part of the adaptive syndrome of secondary pollen presentation, at least in the Vanguerieae.
Structural Evidence in Plectroniella armata
Domatia are small structures on the lower surface of a leaf, usually taking the form of cavities, pouches, domes with an opening, or hairs (or a combination of these), and located in the axils between the main veins. They are found in many dicotyledons including certain members of the Rubiaceae. As part of an ongoing study of selected southern African members of the tribe Vanguerieae of this family, their structure in transverse section was investigated. In some taxa, such as Plectroniella armata, light microscopic (LM) observations revealed large numbers of stomata in the domatia as well as a number of channel-like structures extending across the cuticle toward the cavity of the domatia. The cuticle of the epidermis lining the domatia also appeared thicker than in other parts of the leaves. The epidermis in P. armata was also examined using transmission electron microscopy (TEM). Domatia have been shown to house mainly mites, many of which are predatory or fungivorous, in a symbiotic (mutualistic) relationship with the plant. To date, much research has focussed on the role of domatia in providing shelter for various organisms, their eggs and their young. However, the TEM study revealed the apparent \"channels\" and thick cuticle seen under LM to be electron dense non-cellulosic branching fibrils within pronounced, often closely spaced cuticular folds. The functional significance of these fibrils and folds requires further investigation. Folding of cell walls and membranes at ultrastructural level is usually functionally associated with an increased surface area to facilitate active exchange of compounds/metabolites. This may indicate that translocation of substances and/or other forms of communication is possible between the domatium and its inhabitants. This therefore suggests a far more active role for the leaf in the symbiotic relationship than was previously thought. More work is required to test such a possibility.
Twyfelaars wat Glo
Hans Ester en Chris van der Merwe het albei ʼn lang loopbaan as letterkundiges agter die rug, die een in Suid‑Afrika, die ander in Nederland. Albei is ook toegewyde Christene. In 2013 begin hierdie twee vriende aan mekaar skryf oor lewensvrae wat voortspruit uit hul gedeelde hartstog vir die Bybel en die letterkunde. Aktuele temas kom aan bod, soos “Tussen wanhoop en hoop\", “Om Isak te offer\" en “Bybel, diskussie, lees en herlees\". Geen tema word egter uitgeput nie; die tweegesprek prikkel die leser tot verdere nadenke.
Om te skryf oor die onbeskryflike: Verlies en mistieke verlange in Die sneeuslaper van Marlene van Niekerk
The four stories in Die sneeuslaper by Marlene van Niekerk all contain a 'narrative argument' about the meaning of life and art. The article is about the role of mysticism in the 'argument'. It is impossible to give an exhaustive definition of 'mysticism', but some characteristics mentioned by seminal studies on mysticism are mentioned. At the heart of mysticism, there seems to be a union with the Absolute - an indescribable experience. Mysticism, like trauma, shatters the world in its familiar guise; both phenomena are overwhelming, and they cannot be expressed by conventional language. In Die sneeuslaper, we find a connection between trauma, mysticism and creativity. The main characters go through a traumatic process in which they take leave of their familiar worlds, in search of a mystical reality, more pure than the reality of every day. By entering this 'higher' reality, the creative person is liberated from conventional language and thought and starts to penetrate into the essence of things. It is a process with a liminal structure developing in three stages: It begins with the departure from the familiar world, which leads to transformation and finally to a return with the fruits of creativity. [PUBLICATION ABSTRACT]
Skepelinge. Aanloop tot ‘n roman, Karel Schoeman
Karel Schoeman het ‘n onskatbare bydrae gelewer tot die Afrikaanse romankuns en historiografie. In sy boek Skepelinge. Aanloop tot ‘n roman is daar ‘n verbinding van die twee genres—“Skepelinge” dui op die historiese aard van die boek, maar die newetitel suggereer dat dit iets romanmatigs bevat.