Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
71
result(s) for
"Chrzanowski, Wojciech"
Sort by:
High-fidelity probing of the structure and heterogeneity of extracellular vesicles by resonance-enhanced atomic force microscopy infrared spectroscopy
by
Kim, Sally Yunsun
,
Kalionis Bill
,
Khanal Dipesh
in
Atomic force microscopes
,
Atomic force microscopy
,
Cell culture
2019
Extracellular vesicles (EVs) are highly specialized nanoscale assemblies that deliver complex biological cargos to mediate intercellular communication. EVs are heterogeneous, and characterization of this heterogeneity is paramount to understanding EV biogenesis and activity, as well as to associating them with biological responses and pathologies. Traditional approaches to studying EV composition generally lack the resolution and/or sensitivity to characterize individual EVs, and therefore the assessment of EV heterogeneity has remained challenging. We have recently developed an atomic force microscope IR spectroscopy (AFM-IR) approach to probe the structural composition of single EVs with nanoscale resolution. Here, we provide a step-by-step procedure for our approach and show its power to reveal heterogeneity across individual EVs, within the same population of EVs and between different EV populations. Our approach is label free and able to detect lipids, proteins and nucleic acids within individual EVs. After isolation of EVs from cell culture medium, the protocol involves incubation of the EV sample on a suitable substrate, setup of the AFM-IR instrument and collection of nano-IR spectra and nano-IR images. Data acquisition and analyses can be completed within 24 h, and require only a basic knowledge of spectroscopy and chemistry. We anticipate that new understanding of EV composition and structure through AFM-IR will contribute to our biological understanding of EV biology and could find application in disease diagnosis and the development of EV therapies.This protocol describes an atomic force microscopy infrared spectroscopy (AFM-IR) approach for nanometer-resolution characterization of the structure and composition of single extracellular vesicles.
Journal Article
Interactions between polyphenolic antioxidants quercetin and naringenin dictate the distinctive redox-related chemical and biological behaviour of their mixtures
by
Koziara, Zuzanna
,
Namieśnik, Jacek
,
Bartoszek, Agnieszka
in
631/67/2195
,
639/638/161
,
639/638/92
2021
Food synergy concept is suggested to explain observations that isolated antioxidants are less bioactive than real foods containing them. However, mechanisms behind this discrepancy were hardly studied. Here, we demonstrate the profound impact of interactions between two common food flavonoids (individual: aglycones quercetin—Q and naringenin—N− or their glycosides rutin—R and naringin—N+ vs. mixed: QN− and RN+) on their electrochemical properties and redox-related bioactivities. N− and N+ seemed weak antioxidants individually, yet in both chemical and cellular tests (DPPH and CAA, respectively), they increased reducing activity of mixtures synergistically. In-depth measurements (differential pulse voltammetry) pointed to kinetics of oxidation reaction as decisive factor for antioxidant power. In cellular (HT29 cells) tests, the mixtures exhibited properties of a new substance rather than those of components. Pure flavonoids did not influence proliferation; mixtures stimulated cell growth. Individual flavonoids tended to decrease global DNA methylation with growing concentration; this effect was more pronounced for mixtures, but not concentration-dependent. In nutrigenomic studies, expression of gene set affected by QN− differed entirely from common genes modulated by individual components. These results question the current approach of predicting bioactivity of mixtures based on research with isolated antioxidants.
Journal Article
Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond
by
Wong, Wu Shun Felix
,
Jin, Craig T.
,
Chrzanowski, Wojciech
in
Bioengineering and Biotechnology
,
cancer
,
HIFU
2019
While ultrasound is most widely known for its use in diagnostic imaging, the energy carried by ultrasound waves can be utilized to influence cell function and drug delivery. Consequently, our ability to use ultrasound energy at a given intensity unlocks the opportunity to use the ultrasound for therapeutic applications. Indeed, in the last decade ultrasound-based therapies have emerged with promising treatment modalities for several medical conditions. More recently, ultrasound in combination with nanomedicines, i.e., nanoparticles, has been shown to have substantial potential to enhance the efficacy of many treatments including cancer, Alzheimer disease or osteoarthritis. The concept of ultrasound combined with drug delivery is still in its infancy and more research is needed to unfold the mechanisms and interactions of ultrasound with different nanoparticles types and with various cell types. Here we present the state-of-art in ultrasound and ultrasound-assisted drug delivery with a particular focus on cancer treatments. Notably, this review discusses the application of high intensity focus ultrasound for non-invasive tumor ablation and immunomodulatory effects of ultrasound, as well as the efficacy of nanoparticle-enhanced ultrasound therapies for different medical conditions. Furthermore, this review presents safety considerations related to ultrasound technology and gives recommendations in the context of system design and operation.
Journal Article
Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells
2017
We investigated the influence of nanoparticles’ shape on the physiological responses of cells, when they were fed with spherical and needle-shaped PLGA-PEG nanoparticles (the volume of the nanoparticles had been chosen as the fixed parameter). We found that both types of NPs entered cells via endocytosis and upon internalization they stayed in membrane bounded vesicles. Needle-shaped, but not the spherical-shaped NPs were found to induce significant cytotoxicity in the cell lines tested. Our study evidenced that the cytotoxicity of needle-shaped NPs was induced through the lysosome disruption. Lysosome damage activated the signaling pathways for cell apoptosis, and eventually caused DNA fragmentation and cell death. The present work showed that physiological response of the cells can be very different when the shape of the fed nanoparticles changed from spherical to needle-like. The finding suggests that the toxicity of nanomaterials also depends on their shape.
Journal Article
Can Stem Cells Beat COVID-19: Advancing Stem Cells and Extracellular Vesicles Toward Mainstream Medicine for Lung Injuries Associated With SARS-CoV-2 Infections
by
Chrzanowski, Wojciech
,
Kim, Sally Yunsun
,
McClements, Lana
in
Bioengineering and Biotechnology
,
Coronavirus (2019-nCoV)
,
extracellular vesicles
2020
A number of medicines are currently under investigation for the treatment of COVID-19 disease including anti-viral, anti-malarial, and anti-inflammatory agents. While these treatments can improve patient's recovery and survival, these therapeutic strategies do not lead to unequivocal restoration of the lung damage inflicted by this disease. Stem cell therapies and, more recently, their secreted extracellular vesicles (EVs), are emerging as new promising treatments, which could attenuate inflammation but also regenerate the lung damage caused by COVID-19. Stem cells exert their immunomodulatory, anti-oxidant, and reparative therapeutic effects likely through their EVs, and therefore, could be beneficial, alone or in combination with other therapeutic agents, in people with COVID-19. In this review article, we outline the mechanisms of cytokine storm and lung damage caused by SARS-CoV-2 virus leading to COVID-19 disease and how mesenchymal stem cells (MSCs) and their secreted EVs can be utilized to tackle this damage by harnessing their regenerative properties, which gives them potential enhanced clinical utility compared to other investigated pharmacological treatments. There are currently 17 clinical trials evaluating the therapeutic potential of MSCs for the treatment of COVID-19, the majority of which are administered intravenously with only one clinical trial testing MSC-derived exosomes via inhalation route. While we wait for the outcomes from these trials to be reported, here we emphasize opportunities and risks associated with these therapies, as well as delineate the major roadblocks to progressing these promising curative therapies toward mainstream treatment for COVID-19.A number of medicines are currently under investigation for the treatment of COVID-19 disease including anti-viral, anti-malarial, and anti-inflammatory agents. While these treatments can improve patient's recovery and survival, these therapeutic strategies do not lead to unequivocal restoration of the lung damage inflicted by this disease. Stem cell therapies and, more recently, their secreted extracellular vesicles (EVs), are emerging as new promising treatments, which could attenuate inflammation but also regenerate the lung damage caused by COVID-19. Stem cells exert their immunomodulatory, anti-oxidant, and reparative therapeutic effects likely through their EVs, and therefore, could be beneficial, alone or in combination with other therapeutic agents, in people with COVID-19. In this review article, we outline the mechanisms of cytokine storm and lung damage caused by SARS-CoV-2 virus leading to COVID-19 disease and how mesenchymal stem cells (MSCs) and their secreted EVs can be utilized to tackle this damage by harnessing their regenerative properties, which gives them potential enhanced clinical utility compared to other investigated pharmacological treatments. There are currently 17 clinical trials evaluating the therapeutic potential of MSCs for the treatment of COVID-19, the majority of which are administered intravenously with only one clinical trial testing MSC-derived exosomes via inhalation route. While we wait for the outcomes from these trials to be reported, here we emphasize opportunities and risks associated with these therapies, as well as delineate the major roadblocks to progressing these promising curative therapies toward mainstream treatment for COVID-19.
Journal Article
Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering
by
Kwiatkowski, Ryszard
,
Rajzer, Izabella
,
Chrzanowski, Wojciech
in
Alkaline phosphatase
,
Apatite
,
Biocompatible Materials - chemical synthesis
2014
New nanocomposite membranes with high bioactivity were fabricated using the electrospinning. These nanocomposites combine a degradable polymer poly(
l
/
dl
)-lactide and bone cell signaling carbonate nano-hydroxyapatite (n-HAp). Chemical and physical characterization of the membranes using scanning electron microscopy, Fourier transform infrared spectroscopy and the wide angle X-ray diffraction evidenced that nanoparticles were successfully incorporated into the fibers and membrane structure. The incorporation of the n-HAp into the structure increased significantly the mineralization of the membrane in vitro. It has been demonstrated that after a 3-day incubation of composite membrane in the Simulated Body Fluid a continuous compact apatite layer was formed. In vitro experiments demonstrated that the incorporation of n-HAp significantly improved cell attachment, upregulated cells proliferation and stimulated cell differentiation quantified using Alkaline Phosphatase and OsteoImage tests. In conclusion, the results demonstrated that the addition of n-HAp provided chemical cues that were a key factor that regulated osteoblastic differentiation.
Journal Article
Superparamagnetic Iron Oxide Nanoparticles Modified with Silica Layers as Potential Agents for Lung Cancer Treatment
by
Kornaus, Kamil
,
Reczyński, Witold
,
Marszałek, Marta
in
Ammonia
,
Cancer therapies
,
Cell proliferation
2020
Superparamagnetic iron oxide nanoparticles (SPIONs) are promising drug delivery carriers and hyperthermia agents for the treatment of cancer. However, to ensure their safety in vivo, SPIONs must be modified in order to prevent unwanted iron release. Thus, SPIONs were coated with silica layers of different morphologies: non-porous (@SiO2), mesoporous (@mSiO2) or with a combination of non-porous and mesoporous layers (@SiO2@mSiO2) deposited via a sol–gel method. The presence of SiO2 drastically changed the surface properties of the nanoparticles. The zeta potential changed from 19.6 ± 0.8 mV for SPIONs to −26.1 ± 0.1 mV for SPION@mSiO2. The Brunauer–Emmett–Teller (BET) surface area increased from 7.54 ± 0.02 m2/g for SPIONs to 101.3 ± 2.8 m2/g for SPION@mSiO2. All types of coatings significantly decreased iron release (at least 10 fold as compared to unmodified SPIONs). SPIONs and SPION@mSiO2 were tested in vitro in contact with human lung epithelial cells (A549 and BEAS-2B). Both nanoparticle types were cytocompatible, although some delay in proliferation was observed for BEAS-2B cells as compared to A549 cells, which was correlated with increased cell velocity and nanoparticles uptake.
Journal Article
The Effect of Graphene Oxide Deposition, Shot Peening, and Hybrid Graphening on the Structural and Mechanical Properties of 30HGSA Steel
by
Nasiłowska, Barbara
,
Rygier, Tomasz
,
Olejnik, Piotr
in
Aluminum
,
Bend strength
,
Compressive properties
2025
This publication presents the performance properties of 30HGSA steel after various surface treatments involving hybrid graphene coating, shot peening, and graphene oxide coating, and of the material in its delivery state used in aerospace structures. Performance tests were carried out on the structure, measuring surface roughness, microhardness, corrosion, residual stresses and bending strength for all surface treatments. It has been demonstrated that hybrid graphitization results in increased surface roughness, increased compressive stress and a beneficial increase in the bending strength of the sample compared to other research groups. A new method of strengthening steel surfaces by hybrid graphitization, consisting of coating the steel surface with graphene oxide and shot peening, has been described. The mechanism of hybrid graphitization affecting the increase in the performance properties of 30HGSA steel, including a 43% increase in maximum bending strength compared to BM, has been presented.
Journal Article
Extracellular vesicles as the next‐generation modulators of pharmacokinetics and pharmacodynamics of medications and their potential as adjuvant therapeutics
by
Nordin, Joel Z.
,
McLachlan, Andrew J.
,
Chrzanowski, Wojciech
in
Bioengineering
,
context of use
,
Drug therapy
2024
Background and main body Pharmacokinetics (PK) and pharmacodynamics (PD) are central concepts to guide the dosage and administration of drug therapies and are essential to consider for both healthcare professionals and researchers in therapeutic planning and drug discovery. PK/PD properties of a drug significantly influence variability in response to treatment, including therapeutic failure or excessive medication‐related harm. Furthermore, suboptimal PK properties constitute a significant barrier to further development for some candidate treatments in drug discovery. This article describes how extracellular vesicles (EVs) affect different aspects of PK and PD of medications and their potential to modulate PK and PD properties to address problematic PK/PD profiles of drugs. We reviewed EVs' intrinsic effects on cell behaviours and medication responses. We also described how surface and cargo modifications can enhance EV functionalities and enable them as adjuvants to optimise the PK/PD profile of conventional medications. Furthermore, we demonstrated that various bioengineering strategies can be used to modify the properties of EVs, hence enhancing their potential to modulate PK and PD profile of medications. Conclusion This review uncovers the critical role of EVs in PK and PD modulation and motivates further research and the development of assays to unfold EVs’ full potential in solving PK and PD‐related problems. However, while we have shown that EVs play a vital role in modulating PK and PD properties of medications, we postulated that it is essential to define the context of use when designing and utilising EVs in pharmaceutical and medical applications. Highlights Existing solutions for pharmacokinetics and pharmacodynamics modulation are limited. Extracellular vesicles can optimise pharmacokinetics as a drug delivery vehicle. Biogenesis and administration of extracellular vesicles can signal cell response. The pharmaceutical potential of extracellular vesicles can be enhanced by surface and cargo bioengineering. When using extracellular vesicles as modulators of pharmacokinetics and pharmacodynamics, the ‘context of use’ must be considered. Extracellular vesicles' potential in modulating medications' pharmacokinetics and pharmacodynamics.
Journal Article
Bioprocessing strategies for enhanced probiotic extracellular vesicle production: culture condition modulation
by
Divakarla, Shiva Kamini
,
Winsley, Tristrom
,
Chrzanowski, Wojciech
in
Antimicrobial agents
,
Bacteria
,
biomanufacturing
2024
Probiotic extracellular vesicles are biochemically active structures responsible for biological effects elicited by probiotic bacteria. Lactobacillus spp ., which are abundant in the human body (e.g., gut), are known to have anti-inflammatory and antimicrobial properties, and are commonly used in food products, supplements, and in discovery research. There is increasing evidence that Lactobacillus –derived extracellular vesicles (LREVs) have potent immunomodulatory capacity that is superior to probiotics themselves. However, key mechanistic insights into the process that controls production and thus, the function of LREVs, are lacking. Currently, it is unknown how the probiotic culture microenvironment orchestrates the type, yield and function of LREVs. Here, we investigated how multifactor modulation of the biomanufacturing process controls the yield and biological functionality of the LREVs. To achieve this, we selected Lacticaseibacillus rhamnosus as the candidate probiotic, initially cultivated under traditional culture conditions, i.e., 100% broth concentration and pH 5.5. Subsequently, we systematically modified the culture conditions of the probiotic by adjusting three critical process parameters: (1) culture medium pH (pH 3.5, 5.5 and 7.5), (2) growth time (48 and 72 h), and (3) broth concentration (50% and 10% of original broth concentration). EVs were then isolated separately from each condition. The critical quality attributes (CQA) of LREVs, including physical characteristics (size, distribution, concentration) and biological composition (protein, carbohydrate, lipid), were analysed. Functional impacts of LREVs on human epidermal keratinocytes and Staphylococcus aureus were also assessed as CQA. Our findings show that the production of LREVs is influenced by environmental stresses induced by the culture conditions. Factors like broth concentration, pH levels, and growth time significantly impact stress levels in L. rhamnosus , affecting both the production and composition of LREVs. Additionally, we have observed that LREVs are non-toxicity for keratinocytes, the major cell type of the epidermis, and possess antimicrobial properties against S. aureus , a common human skin pathogen. These properties are prerequisites for the potential application of EVs to treat skin conditions, including infected wounds. However, the functionality of LREVs depends on the culture conditions and stress levels experienced by L. rhamnosus during production. Understanding this relationship between the culture microenvironment, probiotic stress response, and LREV characteristics, can lead to the biomanufacturing of customised probiotic-derived EVs for various medical and industrial applications.
Journal Article