Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
95,396 result(s) for "Chu, He"
Sort by:
No-reference color image quality assessment: from entropy to perceptual quality
This paper presents a high-performance general-purpose no-reference (NR) image quality assessment (IQA) method based on image entropy. The image features are extracted from two domains. In the spatial domain, the mutual information between different color channels and the two-dimensional entropy are calculated. In the frequency domain, the statistical characteristics of the two-dimensional entropy and the mutual information of the filtered subband images are computed as the feature set of the input color image. Then, with all the extracted features, the support vector classifier (SVC) for distortion classification and support vector regression (SVR) are utilized for the quality prediction, to obtain the final quality assessment score. The proposed method, which we call entropy-based no-reference image quality assessment (ENIQA), can assess the quality of different categories of distorted images, and has a low complexity. The proposed ENIQA method was assessed on the LIVE and TID2013 databases and showed a superior performance. The experimental results confirmed that the proposed ENIQA method has a high consistency of objective and subjective assessment on color images, which indicates the good overall performance and generalization ability of ENIQA. The implementation is available on github https://github.com/jacob6/ENIQA.
Remote Sensing Image Semantic Segmentation Based on Edge Information Guidance
Semantic segmentation is an important field for automatic processing of remote sensing image data. Existing algorithms based on Convolution Neural Network (CNN) have made rapid progress, especially the Fully Convolution Network (FCN). However, problems still exist when directly inputting remote sensing images to FCN because the segmentation result of FCN is not fine enough, and it lacks guidance for prior knowledge. To obtain more accurate segmentation results, this paper introduces edge information as prior knowledge into FCN to revise the segmentation results. Specifically, the Edge-FCN network is proposed in this paper, which uses the edge information detected by Holistically Nested Edge Detection (HED) network to correct the FCN segmentation results. The experiment results on ESAR dataset and GID dataset demonstrate the validity of Edge-FCN.
Few-Shot Object Detection on Remote Sensing Images via Shared Attention Module and Balanced Fine-Tuning Strategy
Few-shot object detection is a recently emerging branch in the field of computer vision. Recent research studies have proposed several effective methods for object detection with few samples. However, their performances are limited when applied to remote sensing images. In this article, we specifically analyze the characteristics of remote sensing images and propose a few-shot fine-tuning network with a shared attention module (SAM) to adapt to detecting remote sensing objects, which have large size variations. In our SAM, multi-attention maps are computed in the base training stage and shared with the feature extractor in the few-shot fine-tuning stage as prior knowledge to help better locate novel class objects with few samples. Moreover, we design a new few-shot fine-tuning stage with a balanced fine-tuning strategy (BFS), which helps in mitigating the severe imbalance between the number of novel class samples and base class samples caused by the few-shot settings to improve the classification accuracy. We have conducted experiments on two remote sensing datasets (NWPU VHR-10 and DIOR), and the excellent results demonstrate that our method makes full use of the advantages of few-shot learning and the characteristics of remote sensing images to enhance the few-shot detection performance.
Image Enhancement Driven by Object Characteristics and Dense Feature Reuse Network for Ship Target Detection in Remote Sensing Imagery
As the application scenarios of remote sensing imagery (RSI) become richer, the task of ship detection from an overhead perspective is of great significance. Compared with traditional methods, the use of deep learning ideas has more prospects. However, the Convolutional Neural Network (CNN) has poor resistance to sample differences in detection tasks, and the huge differences in the image environment, background, and quality of RSIs affect the performance for target detection tasks; on the other hand, upsampling or pooling operations result in the loss of detailed information in the features, and the CNN with outstanding results are often accompanied by a high computation and a large amount of memory storage. Considering the characteristics of ship targets in RSIs, this study proposes a detection framework combining an image enhancement module with a dense feature reuse module: (1) drawing on the ideas of the generative adversarial network (GAN), we designed an image enhancement module driven by object characteristics, which improves the quality of the ship target in the images while augmenting the training set; (2) the intensive feature extraction module was designed to integrate low-level location information and high-level semantic information of different resolutions while minimizing the computation, which can improve the efficiency of feature reuse in the network; (3) we introduced the receptive field expansion module to obtain a wider range of deep semantic information and enhance the ability to extract features of targets were at different sizes. Experiments were carried out on two types of ship datasets, optical RSI and Synthetic Aperture Radar (SAR) images. The proposed framework was implemented on classic detection networks such as You Only Look Once (YOLO) and Mask-RCNN. The experimental results verify the effectiveness of the proposed method.
Full length sequencing reveals novel transcripts of detoxification genes along with related alternative splicing events and lncRNAs in Phyllotreta striolata
The striped flea beetle, Phyllotreta striolata (Fabricius), damages crops in the Brassicaceae . The genetic data for this pest are insufficient to reveal its insecticide resistance mechanisms or to develop molecular markers for resistance monitoring. We used PacBio Iso-Seq technology to sequence the full-length transcriptome of P . striolata . After isoform sequence clustering and removal of redundant transcripts, a total of 41,293 transcripts were obtained, and 35,640 of these were annotated in the database of gene products. Structure analysis uncovered 4,307 alternative splicing events, and 3,836 sequences were recognized as lncRNAs. Transcripts with the complete coding region of important detoxification enzymes were further classified. There were 57 transcripts of P450s distributed in CYP2, CYP3, CYP4, and Mito CYP clades, 29 transcripts of ESTs from 4 functional groups, 17 transcripts of GSTs classified into 5 families, 51 transcripts of ABCs distributed in 6 families, and 19 transcripts of UGTs. Twenty-five lncRNAs were predicted to be regulators of these detoxification genes. Full-length transcriptome sequencing is an efficient method for molecular study of P . striolata and it is also useful for gene function analysis.
Oriented Ship Detector for Remote Sensing Imagery Based on Pairwise Branch Detection Head and SAR Feature Enhancement
Recently, object detection in natural images has made a breakthrough, but it is still challenging in oriented ship detection for remote sensing imagery. Considering some limitations in this task, such as uncertain ship orientation, unspecific features for locating and classification in the complex optical environment, and multiplicative speckle interference of synthetic aperture radar (SAR), we propose an oriented ship detector based on the pairwise branch detection head and adaptive SAR feature enhancement. The details are as follows: (1) Firstly, the ships with arbitrary directions are described with a rotated ground truth, and an oriented region proposal network (ORPN) is designed to study the transformation from the horizontal region of interest to the rotated region of interest. The ORPN effectively improved the quality of the candidate area while only introducing a few parameters. (2) In view of the existing algorithms that tend to perform classification and regression prediction on the same output feature, this paper proposes a pairwise detection head (PBH) to design parallel branches to decouple classification and locating tasks, so that each branch can learn more task-specific features. (3) Inspired by the ratio-of-average detector in traditional SAR image processing, the SAR edge enhancement (SEE) module is proposed, which adaptively enhances edge pixels, and the threshold of the edge is learned by the channel-shared adaptive thresholds block. Experiments were carried out on both optical and SAR datasets. In the optical dataset, PBH combined with ORPN improved recall by 5.03%, and in the SAR dataset, the overall method achieved a maximum F1 score improvement of 6.07%; these results imply the validity of our method.
Yeats’s Dreaming Back, \Purgatory\, and Trauma
As few plays can compare with Yeats’s late play Purgatory with its probe into the tormented human psyche, this play can be viewed as a precursor to trauma plays we see later in modern Irish theatre. Yeats’s Purgatory not only deals with a subject of generational trauma accompanied by grinding guilt, shame, anger, and despair but also establishes many of the defining features of later trauma plays through its hybrid form of realism, symbolism, Japanese Noh, minimalist setting, linear-cyclical structure, etc. Yeats’s interest in spiritualism and occultism also allows him a few profound glimpses into psychological studies: Yeats’s A Vision, though viewed by many as his philosophical writings on mystic spirituality, contains some pioneering insights into trauma. By placing Purgatory in dialogue with A Vison, I want to acknowledge A Vision as the theoretical framework for the play, which, however, does not reduce the play to a mere illustration of the theory Yeats outlines in his A Vision, but rather, enables us to understand the complicated process of working through trauma.
A Hierarchical Fully Convolutional Network Integrated with Sparse and Low-Rank Subspace Representations for PolSAR Imagery Classification
Inspired by enormous success of fully convolutional network (FCN) in semantic segmentation, as well as the similarity between semantic segmentation and pixel-by-pixel polarimetric synthetic aperture radar (PolSAR) image classification, exploring how to effectively combine the unique polarimetric properties with FCN is a promising attempt at PolSAR image classification. Moreover, recent research shows that sparse and low-rank representations can convey valuable information for classification purposes. Therefore, this paper presents an effective PolSAR image classification scheme, which integrates deep spatial patterns learned automatically by FCN with sparse and low-rank subspace features: (1) a shallow subspace learning based on sparse and low-rank graph embedding is firstly introduced to capture the local and global structures of high-dimensional polarimetric data; (2) a pre-trained deep FCN-8s model is transferred to extract the nonlinear deep multi-scale spatial information of PolSAR image; and (3) the shallow sparse and low-rank subspace features are integrated to boost the discrimination of deep spatial features. Then, the integrated hierarchical subspace features are used for subsequent classification combined with a discriminative model. Extensive experiments on three pieces of real PolSAR data indicate that the proposed method can achieve competitive performance, particularly in the case where the available training samples are limited.
A robust automated segmentation method for white matter hyperintensity of vascular-origin
•This study proposed a robust and accurate segmentation method for WMH of vascular origin, outperforming the widely used methods to which it was compared.•The method has been validated on two external datasets, demonstrating good generalization ability across different MRI systems and protocols.•This approach is practical and requires no post-processing, offering an accessible and reliable solution for WMH segmentation in various large cohorts. White matter hyperintensity (WMH) is a primary manifestation of small vessel disease (SVD), leading to vascular cognitive impairment and other disorders. Accurate WMH quantification is vital for diagnosis and prognosis, but current automatic segmentation methods often fall short, especially across different datasets. The aims of this study are to develop and validate a robust deep learning segmentation method for WMH of vascular-origin. In this study, we developed a transformer-based method for the automatic segmentation of vascular-origin WMH using both 3D T1 and 3D T2-FLAIR images. Our initial dataset comprised 126 participants with varying WMH burdens due to SVD, each with manually segmented WMH masks used for training and testing. External validation was performed on two independent datasets: the WMH Segmentation Challenge 2017 dataset (170 subjects) and an in-house vascular risk factor dataset (70 subjects), which included scans acquired on eight different MRI systems at field strengths of 1.5T, 3T, and 5T This approach enabled a comprehensive assessment of the method’s generalizability across diverse imaging conditions. We further compared our method against LGA, LPA, BIANCA, UBO-detector and TrUE-Net in optimized settings. Our method consistently outperformed others, achieving a median Dice coefficient of 0.78 ± 0.09 in our primary dataset, 0.72 ± 0.15 in the external dataset 1, and 0.72 ± 0.14 in the external dataset 2. The relative volume errors were 0.15 ± 0.14, 0.50 ± 0.86, and 0.47 ± 1.02, respectively. The true positive rates were 0.81 ± 0.13, 0.92 ± 0.09, and 0.92 ± 0.12, while the false positive rates were 0.20 ± 0.09, 0.40 ± 0.18, and 0.40 ± 0.19. None of the external validation datasets were used for model training; instead, they comprise previously unseen MRI scans acquired from different scanners and protocols. This setup closely reflects real-world clinical scenarios and further demonstrates the robustness and generalizability of our model across diverse MRI systems and acquisition settings. As such, the proposed method provides a reliable solution for WMH segmentation in large-scale cohort studies.
An Anchor-Free Method Based on Adaptive Feature Encoding and Gaussian-Guided Sampling Optimization for Ship Detection in SAR Imagery
Recently, deep-learning methods have yielded rapid progress for object detection in synthetic aperture radar (SAR) imagery. It is still a great challenge to detect ships in SAR imagery due to ships’ small size and confusable detail feature. This article proposes a novel anchor-free detection method composed of two modules to deal with these problems. First, for the lack of detailed information on small ships, we suggest an adaptive feature-encoding module (AFE), which gradually fuses deep semantic features into shallow layers and realizes the adaptive learning of the spatial fusion weights. Thus, it can effectively enhance the external semantics and improve the representation ability of small targets. Next, for the foreground–background imbalance, the Gaussian-guided detection head (GDH) is introduced according to the idea of soft sampling and exploits Gaussian prior to assigning different weights to the detected bounding boxes at different locations in the training optimization. Moreover, the proposed Gauss-ness can down-weight the predicted scores of bounding boxes far from the object center. Finally, the effect of the detector composed of the two modules is verified on the two SAR ship datasets. The results demonstrate that our method can effectively improve the detection performance of small ships in datasets.