Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
277 result(s) for "Chung, K. Fan"
Sort by:
New targets for drug development in asthma
Asthma is a chronic inflammatory disease that affects about 300 million people worldwide, a total that is expected to rise to about 400 million over the next 15–20 years. Most asthmatic individuals respond well to the currently available treatments of inhaled corticosteroids and β-adrenergic agonists; however, 5–10% have severe disease that responds poorly. Improved knowledge of asthma mechanisms has led to the recognition of different asthma phenotypes that might reflect distinct types of inflammation, explaining the effectiveness of anti-leucotrienes and the anti-IgE monoclonal antibody omalizumab in some patients. However, more knowledge of the inflammatory mechanisms within the airways is required. Improvements in available therapies—such as the development of fast-onset, once-a-day combination drugs with better safety profiles—will occur. Other drugs, such as inhaled p38 MAPK inhibitors and anti-oxidants, that target specific pathways or mediators could prove useful as monotherapies, but could also, in combination with corticosteroids, reduce the corticosteroid insensitivity often seen in severe asthma. Biological agents directed against the interleukin-13 pathway and new immunoregulatory agents that modulate functions of T-regulatory and T-helper-17 cells are likely to be successful. Patient-specific treatments will depend on the development of discriminatory handprints of distinct asthma subtypes and are probably over the horizon. Although a cure is unlikely to be developed in the near future, a greater understanding of disease mechanisms could bring such a situation nearer to reality.
Increased Expression of Transient Receptor Potential Vanilloid-1 in Airway Nerves of Chronic Cough
Transient receptor potential vanniloid-1 (TRPV-1) mediates the cough response induced by the pepper extract capsaicin and is expressed in sensory nerves that innervate the airway wall. We determined the expression of TRPV-1 in the airways of patients with chronic persistent cough of diverse causes and with an enhanced capsaicin cough response. We obtained airway mucosal biopsies by fiberoptic bronchoscopy in 29 patients with chronic cough and 16 healthy volunteers without a cough. Immunostaining for nerve profiles with anti-protein gene product (PGP)-9.5 antibody showed no increase in nerve profiles in the airway epithelium of patients with chronic cough; however, with an anti-TRPV-1 antibody, there was a fivefold increase of TRPV-1 staining nerve profiles (p < 0.001). There was a significant correlation between capsaicin tussive response and the number of TRPV-1-positive nerves within the patients with cough. Our findings indicate that TRPV-1 receptors may contribute to an enhanced cough reflex and the cough response in chronic persistent cough of diverse causes.
Asthma Is More Severe in Older Adults
Severe asthma occurs more often in older adult patients. We hypothesized that the greater risk for severe asthma in older individuals is due to aging, and is independent of asthma duration. This is a cross-sectional study of prospectively collected data from adult participants (N=1130; 454 with severe asthma) enrolled from 2002 - 2011 in the Severe Asthma Research Program. The association between age and the probability of severe asthma, which was performed by applying a Locally Weighted Scatterplot Smoother, revealed an inflection point at age 45 for risk of severe asthma. The probability of severe asthma increased with each year of life until 45 years and thereafter increased at a much slower rate. Asthma duration also increased the probability of severe asthma but had less effect than aging. After adjustment for most comorbidities of aging and for asthma duration using logistic regression, asthmatics older than 45 maintained the greater probability of severe asthma [OR: 2.73 (95 CI: 1.96; 3.81)]. After 45, the age-related risk of severe asthma continued to increase in men, but not in women. Overall, the impact of age and asthma duration on risk for asthma severity in men and women is greatest over times of 18-45 years of age; age has a greater effect than asthma duration on risk of severe asthma.
Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsìveness, and the late asthmatic response
Interleukin-5 (IL-5) is essential for the formation of eosinophils, which are thought to have a major role in the pathogenesis of asthma and other allergic diseases. We aimed to assess the effects of monoclonal antibody to IL-5 on blood and sputum eosinophils, airway hyperresponsiveness, and the late asthmatic reaction to inhaled allergen in patients with mild asthma. We did a double-blind randomised placebo-controlled trial, in which a single intravenous infusion of humanised (IgG-k) monoclonal antibody to IL-5 (SB-240563) was given at doses of 2·5 mg/kg (n=8) or 10·0 mg/kg (n=8). The effects of treatment on responses to inhaled allergen challenge, sputum eosinophils, and airway hyper-responsiveness to histamine were measured at weeks 1 and 4 with monitoring of blood eosinophil counts for up to 16 weeks. Monoclonal antibody against IL-5 lowered the mean blood eosinophil count at day 29 from 0·25x10 9 /L (95% CI 0·16-0·34) in the placebo group to 0·04x10 9 /L (0·00-0·07) in the 10 mg/kg group (p<0·0001), and prevented the blood eosinophilia that follows allergen challenge. After inhaled allergen challenge, 9 days after treatment, the percentage sputum eosinophils were 12·2% in the placebo group and lowered to 0·9% (−1·2 to 3·0; p=0·0076) in the 10 mg/kg group, and this effect persisted at day 30 after the dose. There was no significant effect of monoclonal antibody to IL-5 on the late asthmatic response or on airway hyperresponsiveness to histamine. A single dose of monoclonal antibody to IL-5 decreased blood eosinophils for up to 16 weeks and sputum eosinophils at 4 weeks, which has considerable therapeutic potential for asthma and allergy. However, our findings question the role of eosinophils in mediating the late asthmatic response and causing airway hyper-responsiveness.
Histone Acetylase and Deacetylase Activity in Alveolar Macrophages and Blood Mononocytes in Asthma
Histone acetylation status is a key factor in the regulation of inflammatory gene transcription. We investigated the activity of histone acetylases (HAT) and deacetylases (HDAC), and the effect of glucocorticoids in alveolar macrophages (AM) and peripheral blood mononuclear cells (PBMC) from subjects with asthma. Bronchoalveolar lavage was performed in 10 patients with intermittent asthma, 8 with persistent asthma, and 10 healthy control subjects. PBMCs and granulocytes were isolated from six patients with mild and severe asthma, before and after a 7-day course of prednisolone (30 mg/day). AMs were isolated for HDAC assay or incubated with dexamethasone (1 microM). HAT activity was increased (1.43 +/- 0.1 vs. 1.01 +/- 0.1 standard units/10 microg, p < 0.05), and HDAC activity was reduced (3031 +/- 243 vs. 5004 +/- 164 arbitrary fluorescence units/10 microg, p < 0.001) in AMs of subjects with asthma compared with control subjects. Dexamethasone suppressed LPS-induced granulocyte macrophage-colony stimulating factor, tumor necrosis factor-alpha, and interleukin-8 release by 83 +/- 1%, 51 +/- 7% and 20 +/- 9% (p < 0.001), respectively. Similar effects were seen on nuclear factor-kappaB inhibition, and interleukin-8 release was further reduced by the HDAC enhancer, theophylline (37 +/- 6%). Prednisolone increased HDAC activity in PBMCs from subjects with mild asthma. The increased inflammatory response in asthma may be due to reduced HDAC and enhanced HAT activity. Glucocorticoids and theophylline may downregulate the inflammatory response by modulating HAT and HDAC activity, and nuclear factor-kappaB activation.
Effects of Treatment with Anti-immunoglobulin E Antibody Omalizumab on Airway Inflammation in Allergic Asthma
IgE plays an important role in allergic asthma. We hypothesized that reducing IgE in the airway mucosa would reduce airway inflammation. Forty-five patients with mild to moderate persistent asthma with sputum eosinophilia of 2% or more were treated with humanized monoclonal antibody against IgE (omalizumab) (n = 22) or placebo (n = 23) for 16 weeks. Outcomes included inflammatory cells in induced sputum and bronchial biopsies, and methacholine responsiveness. Treatment with omalizumab resulted in marked reduction of serum IgE and a reduction of IgE+ cells in the airway mucosa. The mean percentage sputum eosinophil count decreased significantly (p < 0.001) from 6.6 to 1.7% in the omalizumab group, a reduction significantly (p = 0.05) greater than with placebo (8.5 to 7.0%). This was associated with a significant reduction in tissue eosinophils; cells positive for the high-affinity Fc receptor for IgE; CD3+, CD4+, and CD8+ T lymphocytes; B lymphocytes; and cells staining for interleukin-4, but not with improvement in airway hyperresponsiveness to methacholine. This study shows antiinflammatory effects of omalizumab treatment and provides clues for mechanisms whereby omalizumab reduces asthma exacerbations and other asthma outcomes in more severe asthma. The lack of effect of omalizumab on methacholine responsiveness suggests that IgE or eosinophils may not be causally linked to airway hyperresponsiveness to methacholine in mild to moderate asthma.
A Molecular Mechanism of Action of Theophylline: Induction of Histone Deacetylase Activity to Decrease Inflammatory Gene Expression
The molecular mechanism for the anti-inflammatory action of theophylline is currently unknown, but low-dose theophylline is an effective add-on therapy to corticosteroids in controlling asthma. Corticosteroids act, at least in part, by recruitment of histone deacetylases (HDACs) to the site of active inflammatory gene transcription. They thereby inhibit the acetylation of core histones that is necessary for inflammatory gene transcription. We show both in vitro and in vivo that low-dose theophylline enhances HDAC activity in epithelial cells and macrophages. This increased HDAC activity is then available for corticosteroid recruitment and predicts a cooperative interaction between corticosteroids and theophylline. This mechanism occurs at therapeutic concentrations of theophylline and is dissociated from phosphodiesterase inhibition (the mechanism of bronchodilation) or the blockade of adenosine receptors, which are partially responsible for its side effects. Thus we have shown that low-dose theophylline exerts an anti-asthma effect through increasing activation of HDAC which is subsequently recruited by corticosteroids to suppress inflammatory genes.
Diminished sarco/endoplasmic reticulum Ca²⁺ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma
Phenotypic modulation of airway smooth muscle (ASM) is an important feature of airway remodeling in asthma that is characterized by enhanced proliferation and secretion of pro-inflammatory chemokines. These activities are regulated by the concentration of free Ca²⁺ in the cytosol ([Ca²⁺]i). A rise in [Ca²⁺]i is normalized by rapid reuptake of Ca²⁺ into sarcoplasmic reticulum (SR) stores by the sarco/endoplasmic reticulum Ca²⁺ (SERCA) pump. We examined whether increased proliferative and secretory responses of ASM from asthmatics result from reduced SERCA expression. ASM cells were cultured from subjects with and without asthma. SERCA expression was evaluated by western blot, immunohistochemistry and real-time PCR. Changes in [Ca²⁺]i, cell spreading, cellular proliferation, and eotaxin-1 release were measured. Compared with control cells from healthy subjects, SERCA2 mRNA and protein expression was reduced in ASM cells from subjects with moderately severe asthma. SERCA2 expression was similarly reduced in ASM in vivo in subjects with moderate/severe asthma. Rises in [Ca²⁺]i following cell surface receptor-induced SR activation, or inhibition of SERCA-mediated Ca²⁺ re-uptake, were attenuated in ASM cells from asthmatics. Likewise, the return to baseline of [Ca]i after stimulation by bradykinin was delayed by approximately 50% in ASM cells from asthmatics. siRNA-mediated knockdown of SERCA2 in ASM from healthy subjects increased cell spreading, eotaxin-1 release and proliferation. Our findings implicate a deficiency in SERCA2 in ASM in asthma that contributes to its secretory and hyperproliferative phenotype in asthma, and which may play a key role in mechanisms of airway remodeling.
Nuclear localisation of p65 in sputum macrophages but not in sputum neutrophils during COPD exacerbations
Exacerbations represent an important feature of the clinical manifestation and natural history of chronic obstructive pulmonary disease (COPD). Nuclear localisation of p65 is a signal of nuclear factor-kappaB (NF-kappaB) activation. A study was undertaken to evaluate whether NF-kappaB activation is modified in sputum cells during COPD exacerbations. Total and nuclear p65 immunoreactivity was measured by immunocytochemistry in the sputum cells of 11 smokers with moderate COPD during an exacerbation and after 6-8 weeks of clinical stability. Total sputum cell count was significantly increased during exacerbations from a median (IQR) of 880 (510-1865) to 1914.5 (1065-3205) x 10(3)/ml (p<0.05). The main inflammatory cells in the sputum were neutrophils (83.2 (75.4-92.3)%) and macrophages (14.7 (2.6-21.6)%) and their relative proportion did not change during exacerbations. Nuclear staining for p65 was absent in sputum neutrophils, both during exacerbations and in the stable phase. In contrast, the percentage of macrophages expressing nuclear p65 increased significantly during exacerbations from a median (IQR) of 16 (7-24)% to 41.4 (6-69)% (p<0.05). NF-kappaB appears to be activated in sputum macrophages but not in sputum neutrophils during exacerbations of COPD