Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
250
result(s) for
"Church, Jeffrey S."
Sort by:
Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials
2014
Raman scattering is an inelastic phenomenon. Although its cross section is very small, recent advances in electronics, lasers, optics, and nanotechnology have made Raman spectroscopy suitable in many areas of application. The present article reviews the applications of Raman spectroscopy in food and drug analysis and inspection, including those associated with nanomaterials. Brief overviews of basic Raman scattering theory, instrumentation, and statistical data analysis are also given. With the advent of Raman enhancement mechanisms and the progress being made in metal nanomaterials and nanoscale metal surfaces fabrications, surface enhanced Raman scattering spectroscopy has become an extra sensitive method, which is applicable not only for analysis of foods and drugs, but also for intracellular and intercellular imaging. A Raman spectrometer coupled with a fiber optics probe has great potential in applications such as monitoring and quality control in industrial food processing, food safety in agricultural plant production, and convenient inspection of pharmaceutical products, even through different types of packing. A challenge for the routine application of surface enhanced Raman scattering for quantitative analysis is reproducibility. Success in this area can be approached with each or a combination of the following methods: (1) fabrication of nanostructurally regular and uniform substrates; (2) application of statistic data analysis; and (3) isotopic dilution.
Journal Article
Dissolving Feather Keratin Using Sodium Sulfide for Bio-Polymer Applications
by
Church, Jeffrey S.
,
Poole, Andrew J.
,
Lyons, Russell E.
in
air drying
,
alkalinity
,
biobased products
2011
Feather keratin has been widely studied for use as a bio-based material. In this paper, we dissolve feather keratin using industrial sodium sulfide to investigate the yield, dissolved keratin characteristics, and properties of regenerated products to assess the potential of using sodium sulfide as a means of converting waste feathers into a bio-polymer. Optimal conditions appeared to require short incubation times in order to give maximum strength in the regenerated product. This limits the yield to approximately 55%. Air-dried films and acid-precipitated samples are all readily re-crosslinked, suggesting the re-crosslinking process is robust. Minimizing exposure to the highly alkaline conditions appears favorable to final product strength through minimizing alkaline chain damage. The β-sheet structure of the parent keratin is largely maintained. The regenerated keratin was shown to have potentially attractive physical properties for use as a bio-polymer.
Journal Article
Silk from Crickets: A New Twist on Spinning
by
Church, Jeffrey S.
,
Walker, Andrew A.
,
Merritt, David J.
in
Acinar Cells - metabolism
,
Alanine
,
Amino acid composition
2012
Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks.
Journal Article
Controlling the Molecular Structure and Physical Properties of Artificial Honeybee Silk by Heating or by Immersion in Solvents
2012
Honeybee larvae produce silken cocoons that provide mechanical stability to the hive. The silk proteins are small and non-repetitive and therefore can be produced at large scale by fermentation in E. coli. The recombinant proteins can be fabricated into a range of forms; however the resultant material is soluble in water and requires a post production stabilizing treatment. In this study, we describe the structural and mechanical properties of sponges fabricated from artificial honeybee silk proteins that have been stabilized in aqueous methanol baths or by dry heating. Aqueous methanol treatment induces formation of ß-sheets, with the amount of ß-sheet dictated by methanol concentration. Formation of ß-sheets renders sponges insoluble in water and generates a reversibly compressible material. Dry heat treatments at 190°C produce a water insoluble material, that is stiffer than the methanol treated equivalent but without significant secondary structural changes. Honeybee silk proteins are particularly high in Lys, Ser, Thr, Glu and Asp. The properties of the heat treated material are attributed to generation of lysinoalanine, amide (isopeptide) and/or ester covalent cross-links. The unique ability to stabilize material by controlling secondary structure rearrangement and covalent cross-linking allows us to design recombinant silk materials with a wide range of properties.
Journal Article
On the detection of carbon fibre storage contamination and its effect on the fibre–matrix interface
by
Church, Jeffrey S.
,
Li, Quanxiang
,
Woodhead, Andrea L.
in
140/146
,
639/638/298
,
639/638/542/971
2018
Contamination caused by inappropriate carbon fibre (CF) storage may have an impact on their end use in reinforced composite materials. Due to the chemical complexity of CFs it is not easy to detect potential contaminants, especially at the early stage during manufacturing and handling. In this paper, X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared (FTIR) spectroscopy and Surface Energy Analysis (IGC-SEA) were used to assess the surfaces of CFs stored in polyolefin zip-lock bags for possible contamination. Only after over 2 months in-bag storage, was XPS capable of detecting a minor increase in nitrogen on the CF surface while FTIR revealed the presence of fatty acid amides and fatty acids, both associated with the storage media. However neither of these techniques were sensitive enough to show significant evolution of the amount of contamination as a function of storage time. In contrast, IGC-SEA distinguished surface energy differences between CFs before and after storage. These differences were found to change as a function of storage time, which were attributed to increases in contamination amounts. Single fibre fragmentation tests indicated that the surface contamination had potential to disrupt the fibre-matrix interface. These findings provide a new method for assessing the surface contamination of CFs with potential application to other materials.
Journal Article
Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk
by
Church, Jeffrey S.
,
Kaplan, David L.
,
Sutherland, Tara D.
in
Amino acid composition
,
Amino acids
,
Analysis
2011
Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk.
Journal Article
Graphene based room temperature flexible nanocomposites from permanently cross-linked networks
by
Church, Jeffrey S.
,
Fox, Bronwyn L.
,
Allioux, Francois-Marie
in
639/301/357/918/1053
,
639/301/923/1028
,
Humanities and Social Sciences
2018
Graphene based room temperature flexible nanocomposites were prepared using epoxy thermosets for the first time. Flexible behavior was induced into the epoxy thermosets by introducing charge transfer complexes between functional groups within cross linked epoxy and room temperature ionic liquid ions. The graphene nanoplatelets were found to be highly dispersed in the epoxy matrix due to ionic liquid cation–π interactions. It was observed that incorporation of small amounts of graphene into the epoxy matrix significantly enhanced the mechanical properties of the epoxy. In particular, a 0.6 wt% addition increased the tensile strength and Young’s modulus by 125% and 21% respectively. The electrical resistance of nanocomposites was found to be increased with graphene loading indicating the level of self-organization between the ILs and the graphene sheets in the matrix of the composite. The graphene nanocomposites were flexible and behave like ductile thermoplastics at room temperature. This study demonstrates the use of ionic liquid as a compatible agent to induce flexibility in inherently brittle thermoset materials and improve the dispersion of graphene to create high performance nanocomposite materials.
Journal Article
Modeling Tissue Growth Within Nonwoven Scaffolds Pores
by
Church, Jeffrey S.
,
Werkmeister, Jerome A.
,
Ingham, Eileen
in
Animals
,
Biomedical materials
,
Cell growth
2011
In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process.
Journal Article
An improved understanding of the dispersion of multi-walled carbon nanotubes in non-aqueous solvents
by
Church, Jeffrey S.
,
Fox, Bronwyn L.
,
Li, Quanxiang
in
Carbon
,
Centrifugation
,
Characterization and Evaluation of Materials
2014
The homogeneous and stable dispersion of carbon nanotubes (CNTs) in solvents is often a prerequisite for their use in advanced materials. Dispersion procedures, reagent concentration as well as the interactions among reagent, defective CNTs and near-perfect CNTs will affect the resulting CNT dispersion properties. This study, for the first time, presents a detailed comparison between two different approaches for dispersing CNTs. The results enhance our understanding of the interactions between surfactant, defective CNTs and near-perfect CNTs and thus provide insight into the mechanism of CNT dispersion. Dispersions of “as-produced” short multi-walled carbon nanotubes (MWCNTs) in
N
,
N
-dimethylformamide were prepared by two different surfactant (Triton X-100) assisted methods: ultrasonication and ultrasonication followed by centrifugation, decanting the supernatant and redispersing the precipitate. Visual observation and UV–visible spectroscopy results showed that the latter method produce a more stable dispersion with higher MWCNT content compared to dispersions produced by ultrasonication alone. Transmission electron microscopy and Raman spectroscopic investigations revealed that the centrifugation/decanting step removed highly defective nanotubes, amorphous carbon and excess surfactant from the readily re-dispersible near-perfect CNT precipitate. This is contrary to other published findings where the dispersed MWCNTs were found in the supernatant. Thermogravimetric analysis showed that 95 % of Triton X-100 was removed by centrifugation/decanting step, and the remainder of the Triton X-100 molecules is likely randomly adsorbed onto the MWCNT surface. Infrared spectral analysis suggests that the methylene groups of the polyoxyethylene (aliphatic ether) chains of the residual Triton X-100 molecules are interacting with the MWCNTs.
Journal Article