Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "Ciasca, Gabriele"
Sort by:
Estimation of the time of death by measuring the variation of lateral cerebral ventricle volume and cerebrospinal fluid radiodensity using postmortem computed tomography
Abstract Using postmortem CT (PMCT), changes in the volume of the lateral cerebral ventricles (LCVs) and modifications of the radiodensity of cerebrospinal fluid (CSF) have been examined to identify a possible relationship between these changes and the time of death. Subsequent periodical CT scans termed “sequential scans” for ten corpses at known time of death were obtained, and a 3D segmentation of the entire LCV was carried out to measure its volume and radiodensity over time from ~ 5.5- h up to 273-h postmortem. A linear decrease of the LCV volume for all the cases was observed in the investigated time range, together with an overall logarithmic increase of radiodensity. Although a larger sampling should be performed to improve the result reliability, our finding suggests that the postmortem variation of CSF radiodensity can be a potentially useful tool in determining postmortem interval, a finding that is worthy of further investigation.
Distinct Biomarker Profiles of B-Cell Activation in Metabolic and Viral Hepatic Fibrosis
Increasing evidence underlines the role of B-cells in the development of hepatic fibrogenesis following viral infections and metabolic dysfunction, through different mechanisms depending on the etiology. Circulating biomarkers of B-cell activation—such as B-cell activating factor (BAFF), immunoglobulin G (IgG) subclasses, and free light chains (FLCs)—may be associated with different results between viral and metabolic hepatic fibrosis, supporting their use as diagnostic tools. We conducted a case-control study including 100 patients with liver fibrosis, 50/100 of metabolic etiology and 50/100 of viral etiology. A reference group of 30 healthy donors was included as control. Serum levels of BAFF were measured using ELISA, while IgG subclasses (IgG1, IgG2, IgG3, IgG4), κ-FLC, λ-FLC, and the κ/λ ratio were quantified by turbidimetric methods. In univariate analysis, κ-FLC, λ-FLC, and BAFF levels were significantly elevated in both patient groups, with the highest concentrations consistently observed in metabolic fibrosis. IgG2 was selectively increased in metabolic fibrosis, whereas IgG3 was specifically elevated in viral fibrosis. Multivariate analysis confirmed these findings, showing a clear clustering of the three groups and identifying increased BAFF and κ-FLC as key features of metabolic fibrosis, while elevated IgG3 emerged as the most distinctive marker of viral etiology. These results reveal distinct B-cell-related immunological signatures in metabolic and viral hepatic fibrosis supporting the role of BAFF, FLCs, and IgG subclasses as biomarkers of etiological differentiation, and provide novel insights into the immune mechanisms driving fibrosis progression, potentially contributing to the identification of new therapeutic targets.
Artificial Intelligence for Liquid Biopsy: FTIR Spectroscopy and Autoencoder-Based Detection of Cancer Biomarkers in Extracellular Vesicles
Extracellular vesicles (EVs) are increasingly recognized as promising non-invasive biomarkers for cancer and other diseases, but their clinical translation remains limited by the lack of comprehensive characterization strategies. Spectroscopic approaches such as Fourier-transform infrared (FTIR) spectroscopy can provide a global biochemical fingerprint of intact EVs, but their interpretation requires advanced analytical tools. In this study, we applied an autoencoder-based framework to attenuated total reflection FTIR (ATR-FTIR) spectra of blood-derived components, including plasma, red blood cells (RBCs), RBC-ghosts, and EVs, comprising 278 samples collected from 135 patients, to obtain latent features capable of capturing biologically meaningful variability. The autoencoder compressed spectra into 12 latent features while preserving spectral information with low reconstruction error. Unsupervised UMAP projection of the latent features separated the blood components into different clusters, supporting their biological relevance. The model was then applied to EV spectra from patients with hepatocellular carcinoma (HCC) and cirrhotic controls. Four features significantly differed between the two groups, and an elastic-net regularized logistic model evaluated with a leave-one-out cross-validation framework retained a single latent feature, achieving an out-of-fold ROC AUC of 0.785 (95% CI 0.602-0.967), with performance broadly comparable to that typically reported for AFP, the most commonly used biomarker for HCC. This study provides the first proof-of-concept that an autoencoder can be applied to FTIR spectra of EVs, extracting biologically relevant latent features with potential application in cancer detection.
Nanomechanical mapping helps explain differences in outcomes of eye microsurgery: A comparative study of macular pathologies
Many ocular diseases are associated with an alteration of the mechanical and the material properties of the eye. These mechanically-related diseases include macular hole and pucker, two ocular conditions due to the presence of abnormal physical tractions acting on the retina. A complete relief of these tractions can be obtained through a challenging microsurgical procedure, which requires the mechanical peeling of the internal limiting membrane of the retina (ILM). In this paper, we provide the first comparative study of the nanoscale morphological and mechanical properties of the ILM in macular hole and macular pucker. Our nanoscale elastic measurements unveil a different bio-mechanical response of the ILM in the two pathologies, which correlates well to significant differences occurring during microsurgery. The results here presented pave the way to the development of novel dedicated microsurgical protocols based on the material ILM properties in macular hole or pucker. Moreover, they contribute to clarify why, despite a common aetiology, a patient might develop one disease or the other, an issue which is still debated in literature.
Phase separation of the plasma membrane in human red blood cells as a potential tool for diagnosis and progression monitoring of type 1 diabetes mellitus
Glycosylation, oxidation and other post-translational modifications of membrane and transmembrane proteins can alter lipid density, packing and interactions, and are considered an important factor that affects fluidity variation in membranes. Red blood cells (RBC) membrane physical state, showing pronounced alterations in Type 1 diabetes mellitus (T1DM), could be the ideal candidate for monitoring the disease progression and the effects of therapies. On these grounds, the measurement of RBC membrane fluidity alterations can furnish a more sensitive index in T1DM diagnosis and disease progression than Glycosylated hemoglobin (HbA1c), which reflects only the information related to glycosylation processes. Here, through a functional two-photon microscopy approach we retrieved fluidity maps at submicrometric scale in RBC of T1DM patients with and without complications, detecting an altered membrane equilibrium. We found that a phase separation between fluid and rigid domains occurs, triggered by systemic effects on membranes fluidity of glycation and oxidation. The phase separation patterns are different among healthy, T1DM and T1DM with complications patients. Blood cholesterol and LDL content are positively correlated with the extent of the phase separation patterns. To quantify this extent a machine learning approach is employed to develop a Decision-Support-System (DSS) able to recognize different fluidity patterns in RBC. Preliminary analysis shows significant differences(p<0.001) among healthy, T1DM and T1DM with complications patients. The development of an assay based on Phase separation of the plasma membrane of the Red Blood cells is a potential tool for diagnosis and progression monitoring of type 1 diabetes mellitus, and could allow customization and the selection of medical treatments in T1DM in clinical settings, and enable the early detection of complications.
Antenna-enhanced mid-infrared detection of extracellular vesicles derived from human cancer cell cultures
Background Extracellular Vesicles (EVs) are sub-micrometer lipid-bound particles released by most cell types. They are considered a promising source of cancer biomarkers for liquid biopsy and personalized medicine due to their specific molecular cargo, which provides biochemical information on the state of parent cells. Despite this potential, EVs translation process in the diagnostic practice is still at its birth, and the development of novel medical devices for their detection and characterization is highly required. Results In this study, we demonstrate mid-infrared plasmonic nanoantenna arrays designed to detect, in the liquid and dry phase, the specific vibrational absorption signal of EVs simultaneously with the unspecific refractive index sensing signal. For this purpose, EVs are immobilized on the gold nanoantenna surface by immunocapture, allowing us to select specific EV sub-populations and get rid of contaminants. A wet sample-handling technique relying on hydrophobicity contrast enables effortless reflectance measurements with a Fourier-transform infrared (FTIR) spectro-microscope in the wavelength range between 10 and 3 µm. In a proof-of-principle experiment carried out on EVs released from human colorectal adenocarcinoma (CRC) cells, the protein absorption bands (amide-I and amide-II between 5.9 and 6.4 µm) increase sharply within minutes when the EV solution is introduced in the fluidic chamber, indicating sensitivity to the EV proteins. A refractive index sensing curve is simultaneously provided by our sensor in the form of the redshift of a sharp spectral edge at wavelengths around 5 µm, where no vibrational absorption of organic molecules takes place: this permits to extract of the dynamics of EV capture by antibodies from the overall molecular layer deposition dynamics, which is typically measured by commercial surface plasmon resonance sensors. Additionally, the described metasurface is exploited to compare the spectral response of EVs derived from cancer cells with increasing invasiveness and metastatic potential, suggesting that the average secondary structure content in EVs can be correlated with cell malignancy. Conclusions Thanks to the high protein sensitivity and the possibility to work with small sample volumes—two key features for ultrasensitive detection of extracellular vesicles- our lab-on-chip can positively impact the development of novel laboratory medicine methods for the molecular characterization of EVs. Graphical Abstract
An evaluation of the objectivity and reproducibility of shear wave elastography in estimating the post-mortem interval: a tissue biomechanical perspective
Cadaveric rigidity—also referred to as rigor mortis—is a valuable source of information for estimating the time of death, which is a fundamental and challenging task in forensic sciences. Despite its relevance, assessing the level of cadaveric rigidity still relies on qualitative and often subjective observations, and the development of a more quantitative approach is highly demanded. In this context, ultrasound shear wave elastography (US SWE) appears to be a particularly well-suited technique for grading cadaveric rigidity, as it allows non-invasive quantification of muscle stiffness in terms of Young’s modulus (E), which is a widely used parameter in tissue biomechanics. In this pilot study, we measured, for the first time in the literature, changes in the mechanical response of muscular tissues from 0 to 60 h post-mortem (hpm) using SWE, with the aim of investigating its applicability to forensic practice. For this purpose, 26 corpses were included in the study, and the muscle mechanical response was measured at random times in the 0–60 hpm range. Despite the preliminary nature of this study, our data indicate a promising role of SWE in the quantitative determination of cadaveric rigidity, which is still currently based on qualitative and semiquantitative methods. A more in-depth study is required to confirm SWE applicability in this field in order to overcome some of the inherent limitations of the present work, such as the rather low number of cases and the non-systematic approach of the measurements.
Recent Advances in the Label-Free Characterization of Exosomes for Cancer Liquid Biopsy: From Scattering and Spectroscopy to Nanoindentation and Nanodevices
Exosomes (EXOs) are nano-sized vesicles secreted by most cell types. They are abundant in bio-fluids and harbor specific molecular constituents from their parental cells. Due to these characteristics, EXOs have a great potential in cancer diagnostics for liquid biopsy and personalized medicine. Despite this unique potential, EXOs are not yet widely applied in clinical settings, with two main factors hindering their translational process in diagnostics. Firstly, conventional extraction methods are time-consuming, require large sample volumes and expensive equipment, and often do not provide high-purity samples. Secondly, characterization methods have some limitations, because they are often qualitative, need extensive labeling or complex sampling procedures that can induce artifacts. In this context, novel label-free approaches are rapidly emerging, and are holding potential to revolutionize EXO diagnostics. These methods include the use of nanodevices for EXO purification, and vibrational spectroscopies, scattering, and nanoindentation for characterization. In this progress report, we summarize recent key advances in label-free techniques for EXO purification and characterization. We point out that these methods contribute to reducing costs and processing times, provide complementary information compared to the conventional characterization techniques, and enhance flexibility, thus favoring the discovery of novel and unexplored EXO-based biomarkers. In this process, the impact of nanotechnology is systematically highlighted, showing how the effectiveness of these techniques can be enhanced using nanomaterials, such as plasmonic nanoparticles and nanostructured surfaces, which enable the exploitation of advanced physical phenomena occurring at the nanoscale level.
A novel method for post-mortem interval estimation based on tissue nano-mechanics
Forensic estimation of post-mortem interval relies on different methods, most of which, however, have practical limitations or provide insufficient results, still lacking a gold standard method. In order to better understand the phenomenon of rigor mortis and its applicability to the post-mortem interval estimation, we decided to use atomic force microscopy, a tool often employed to measure mechanical properties of adherent cells. Thus, we surgically removed skeletal muscle samples of three forensic cases from 0 to 120 h post-mortem and quantitatively evaluate two parameters: the Young’s modulus (E), which gives information about the sample stiffness, and the hysteresis (H), which estimates the contribution of viscous forces. Despite being a preliminary study, the obtained results show that the temporal behavior of E well correlates with the expected evolution of rigor mortis between 0 and 48 h post-mortem, and then monotonically decreases over time. Unfortunately, it is strongly affected by inter-individual variability. However, we found that H provides measurable data along a time-dependent curve back to the starting point, and these data measured on different subjects collapse onto a single master curve, getting rid of the inter-individual variability. Although a larger sampling should be performed to improve the result reliability, this finding is strongly suggestive that the evaluation of rigor mortis should involve the measure of the nanoscale dissipative behavior of muscular tissues.