Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
51
result(s) for
"Cichowski, Karen"
Sort by:
Combating castration-resistant prostate cancer by co-targeting the epigenetic regulators EZH2 and HDAC
by
Cichowski, Karen
,
Mattioli, Kaia
,
Kuzmickas, Ryan
in
Acetylation
,
Activating transcription factor 3
,
Analysis
2023
While screening and early detection have reduced mortality from prostate cancer, castration-resistant disease (CRPC) is still incurable. Here, we report that combined EZH2/HDAC inhibitors potently kill CRPCs and cause dramatic tumor regression in aggressive human and mouse CRPC models. Notably, EZH2 and HDAC both transmit transcriptional repressive signals: regulating histone H3 methylation and histone deacetylation, respectively. Accordingly, we show that suppression of both EZH2 and HDAC are required to derepress/induce a subset of EZH2 targets, by promoting the sequential demethylation and acetylation of histone H3. Moreover, we find that the induction of one of these targets, ATF3 , which is a broad stress response gene, is critical for the therapeutic response. Importantly, in human tumors, low ATF3 levels are associated with decreased survival. Moreover, EZH2 - and ATF3- mediated transcriptional programs inversely correlate and are most highly/lowly expressed in advanced disease. Together, these studies identify a promising therapeutic strategy for CRPC and suggest that these two major epigenetic regulators buffer prostate cancers from a lethal response to cellular stresses, thereby conferring a tractable therapeutic vulnerability.
Journal Article
AKT and EZH2 inhibitors kill TNBCs by hijacking mechanisms of involution
2024
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and has the highest rate of recurrence
1
. The predominant standard of care for advanced TNBC is systemic chemotherapy with or without immunotherapy; however, responses are typically short lived
1
,
2
. Thus, there is an urgent need to develop more effective treatments. Components of the PI3K pathway represent plausible therapeutic targets; more than 70% of TNBCs have alterations in PIK3CA, AKT1 or PTEN
3
–
6
. However, in contrast to hormone-receptor-positive tumours, it is still unclear whether or how triple-negative disease will respond to PI3K pathway inhibitors
7
. Here we describe a promising AKT-inhibitor-based therapeutic combination for TNBC. Specifically, we show that AKT inhibitors synergize with agents that suppress the histone methyltransferase EZH2 and promote robust tumour regression in multiple TNBC models in vivo. AKT and EZH2 inhibitors exert these effects by first cooperatively driving basal-like TNBC cells into a more differentiated, luminal-like state, which cannot be effectively induced by either agent alone. Once TNBCs are differentiated, these agents kill them by hijacking signals that normally drive mammary gland involution. Using a machine learning approach, we developed a classifier that can be used to predict sensitivity. Together, these findings identify a promising therapeutic strategy for this highly aggressive tumour type and illustrate how deregulated epigenetic enzymes can insulate tumours from oncogenic vulnerabilities. These studies also reveal how developmental tissue-specific cell death pathways may be co-opted for therapeutic benefit.
AKT inhibitors synergize with agents that suppress the histone methyltransferase EZH2 and promote robust tumour regression in multiple triple-negative breast cancer models in vivo by triggering an involution-like process.
Journal Article
Cotargeting a MYC/eIF4A-survival axis improves the efficacy of KRAS inhibitors in lung cancer
2023
Despite the success of KRAS G12C inhibitors in non-small cell lung cancer (NSCLC), more effective treatments are needed. One preclinical strategy has been to cotarget RAS and mTOR pathways; however, toxicity due to broad mTOR inhibition has limited its utility. Therefore, we sought to develop a more refined means of targeting cap-dependent translation and identifying the most therapeutically important eukaryotic initiation factor 4F complex-translated (eIF4F-translated) targets. Here, we show that an eIF4A inhibitor, which targets a component of eIF4F, dramatically enhances the effects of KRAS G12C inhibitors in NSCLCs and together these agents induce potent tumor regression in vivo. By screening a broad panel of eIF4F targets, we show that this cooperativity is driven by effects on BCL-2 family proteins. Moreover, because multiple BCL-2 family members are concomitantly suppressed, these agents are broadly efficacious in NSCLCs, irrespective of their dependency on MCL1, BCL-xL, or BCL-2, which is known to be heterogeneous. Finally, we show that MYC overexpression confers sensitivity to this combination because it creates a dependency on eIF4A for BCL-2 family protein expression. Together, these studies identify a promising therapeutic strategy for KRAS-mutant NSCLCs, demonstrate that BCL-2 proteins are the key mediators of the therapeutic response in this tumor type, and uncover a predictive biomarker of sensitivity.
Journal Article
The NF1 Tumor Suppressor Critically Regulates TSC2 and mTOR
2005
Loss-of-function mutations in the NF1 tumor suppressor gene underlie the familial cancer syndrome neurofibromatosis type I (NF1). The NF1-encoded protein, neurofibromin, functions as a Ras-GTPase activating protein (RasGAP). Accordingly, deregulation of Ras is thought to contribute to NF1 development. However, the critical effector pathways involved in disease pathogenesis are still unknown. We show here that the mTOR pathway is tightly regulated by neurofibromin. mTOR is constitutively activated in both NF1-deficient primary cells and human tumors in the absence of growth factors. This aberrant activation depends on Ras and PI3 kinase, and is mediated by the phosphorylation and inactivation of the TSC2-encoded protein tuberin by AKT. Importantly, tumor cell lines derived from NF1 patients, and a genetically engineered cell system that requires Nf1-deficiency for transformation, are highly sensitive to the mTOR inhibitor rapamycin. Furthermore, while we show that the activation of endogenous Ras leads to constitutive mTOR signaling in this disease state, we also demonstrate that in normal cells Ras is differentially required for mTOR signaling in response to various growth factors. Thus, these findings identify the NF1 tumor suppressor as an indispensable regulator of TSC2 and mTOR. Furthermore, our results also demonstrate that Ras plays a critical role in the activation of mTOR in both normal and tumorigenic settings. Finally, these data suggest that rapamycin, or its derivatives, may represent a viable therapy for NF1.
Journal Article
Combinatorial strategies to target RAS-driven cancers
2024
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
In this Review, Cichowski and colleagues provide an overview of combinatorial strategies designed to treat RAS-driven cancers that are based on four concepts that include vertical pathway inhibition, co-targeting RAS and adaptive survival pathways, co-targeting downstream or converging pathways and capitalizing on other cancer-associated vulnerabilities.
Journal Article
ErbB-3 Mediates Phosphoinositide 3-Kinase Activity in Gefitinib-Sensitive Non-Small Cell Lung Cancer Cell Lines
by
Jänne, Pasi A.
,
Mukohara, Toru
,
Cichowski, Karen
in
Animals
,
Antibodies
,
Antineoplastic Agents - pharmacology
2005
Therapies that target the EGF receptor (EGFR), such as gefitinib (IRESSA), are effective in a subset of patients with advanced non-small cell lung cancer (NSCLC). The differences in intracellular signaling networks between gefitinib-sensitive and -resistant NSCLCs remain poorly understood. In this study, we observe that gefitinib reduces phospho-Akt levels only in NSCLC cell lines in which it inhibits growth. To elucidate the mechanism underlying this observation, we compared immunoprecipitates of phosphoinositide 3-kinase (PI3K) between gefitinib-sensitive and -resistant NSCLC cell lines. We observe that PI3K associates with ErbB-3 exclusively in gefitinib-sensitive NSCLC cell lines. Gefitinib dissociates this complex, thereby linking EGFR inhibition to decreased Akt activity. In contrast, gefitinib-resistant cells do not use ErbB-3 to activate the PI3K/Akt pathway. In fact, abundant ErbB-3 expression is detected only in gefitinib-sensitive NSCLC cell lines. Two gefitinib-sensitive NSCLC cell lines with endogenous distinct activating EGFR mutations (L858R and Del747-749), frequently observed in NSCLC patients who respond to gefitinib, also use ErbB-3 to couple to PI3K. Down-regulation of ErbB-3 by means of short hairpin RNA leads to decreased phospho-Akt levels in the gefitinib-sensitive NSCLC cell lines, Calu-3 (WT EGFR) and H3255 (L858R EGFR), but has no effect on Akt activation in the gefitinib-resistant cell lines, A549 and H522. We conclude that ErbB-3 is used to couple EGFR to the PI3K/Akt pathway in gefitinib-sensitive NSCLC cell lines harboring WT and mutant EGFRs.
Journal Article
Tissue-specificity in cancer
by
Elledge, Stephen J.
,
Cichowski, Karen
,
Haigis, Kevin M.
in
Cancer
,
Copy number
,
Cyclin-dependent kinase
2019
Cancer driver genes exhibit remarkable tissue-specificity We are in the midst of a renaissance in cancer genetics. Over the past several decades, candidate-based targeted sequencing efforts provided a steady stream of information on the genetic drivers for certain cancer types. However, with recent technological advances in DNA sequencing, this stream has become a torrent of unbiased genetic information revealing the frequencies and patterns of point mutations and copy number variations (CNVs) across the entire spectrum of cancers. One of the most important observations from this work is that genetic alterations in bona fide cancer drivers (those genes that, when mutated, promote tumorigenesis) show a remarkable spectrum of tissue specificity: Alterations in certain driver genes appear only in cancers derived from one or a few tissue types ( 1 ). Only a handful of cancer drivers [such as telomerase reverse transcriptase ( TERT ), TP53 , the cyclin-dependent kinase inhibitor 2A ( CDKN2A ) locus, and MYC ] show broad tissue spectrums. Here, we discuss the concept of tissue specificity of genetic alterations in cancer and provide general hypotheses to help explain this biological phenomenon.
Journal Article
Mouse Models of Tumor Development in Neurofibromatosis Type 1
by
Santiago, Sabrina
,
Shih, T. Shane
,
Cichowski, Karen
in
Animals
,
Biological and medical sciences
,
Cancer
1999
Neurofibromatosis type 1 (NF1) is a prevalent familial cancer syndrome resulting from germ line mutations in the NF1 tumor suppressor gene. Hallmark features of the disease are the development of benign peripheral nerve sheath tumors (neurofibromas), which can progress to malignancy. Unlike humans, mice that are heterozygous for a mutation in Nf1 do not develop neurofibromas. However, as described here, chimeric mice composed in part of Nf1$^{-/-}$ cells do, which demonstrates that loss of the wild-type Nf1 allele is rate-limiting in tumor formation. In addition, mice that carry linked germ line mutations in Nf1 and p53 develop malignant peripheral nerve sheath tumors (MPNSTs), which supports a cooperative and causal role for p53 mutations in MPNST development. These two mouse models provide the means to address fundamental aspects of disease development and to test therapeutic strategies.
Journal Article
Neurofibromatosis 2011: a report of the Children’s Tumor Foundation Annual Meeting
by
Giancotti, Filippo
,
Stemmer-Rachamimov, Anat
,
Wallace, Margret R.
in
Births
,
Cancer
,
Carboplatin
2012
The 2011 annual meeting of the Children’s Tumor Foundation, the annual gathering of the neurofibromatosis (NF) research and clinical communities, was attended by 330 participants who discussed integration of new signaling pathways into NF research, the appreciation for NF mutations in sporadic cancers, and an expanding pre-clinical and clinical agenda. NF1, NF2, and schwannomatosis collectively affect approximately 100,000 persons in US, and result from mutations in different genes. Benign tumors of NF1 (neurofibroma and optic pathway glioma) and NF2 (schwannoma, ependymoma, and meningioma) and schwannomatosis (schwannoma) can cause significant morbidity, and there are no proven drug treatments for any form of NF. Each disorder is associated with additional manifestations causing morbidity. The research presentations described in this review covered basic science, preclinical testing, and results from clinical trials, and demonstrate the remarkable strides being taken toward understanding of and progress toward treatments for these disorders based on the close interaction among scientists and clinicians.
Journal Article
Loss of negative regulators amplifies RAS signaling
by
Lock, Rebecca
,
Cichowski, Karen
in
692/699/67/1990/283/1897
,
Agriculture
,
Animal Genetics and Genomics
2015
A new study identifies
SPRY4
as a tumor suppressor in acute myeloid leukemia and shows that loss of SPRY4 acts as an alternative mechanism to drive RAS signaling. In addition, a paradigm of cooperativity in which combined loss of multiple negative regulators of the RAS pathway supplants the need for
RAS
mutations is suggested.
Journal Article