Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Cicogna, Antonio C."
Sort by:
Aerobic Exercise Training Prevents Heart Failure-Induced Skeletal Muscle Atrophy by Anti-Catabolic, but Not Anabolic Actions
Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting. We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels. Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.
AT1 Receptor Blockade Attenuates Insulin Resistance and Myocardial Remodeling in Rats with Diet-Induced Obesity
Although obesity has been associated with metabolic and cardiac disturbances, the carrier mechanisms for these responses are poorly understood. This study analyzed whether angiotensin II blockade attenuates metabolic and cardiovascular disorders in rats with diet-induced obesity. Wistar-Kyoto (n = 40) rats were subjected to control (C; 3.2 kcal/g) and hypercaloric diets (OB; 4.6 kcal/g) for 30 weeks. Subsequently, rats were distributed to four groups: C, CL, OB, and OBL. L groups received Losartan (30 mg/kg/day) for five weeks. After this period we performed in vivo glucose tolerance and insulin tolerance tests, and measured triacylglycerol, insulin, angiotensin-converting enzyme activity (ACE), and leptin levels. Cardiovascular analyzes included systolic blood pressure (SBP), echocardiography, myocardial morphometric study, myosin heavy chain composition, and measurements of myocardial protein levels of angiotensin, extracellular signal-regulated (ERK1/2), c-Jun amino-terminal kinases (JNK), insulin receptor subunit β (βIR), and phosphatidylinositol 3-kinase (PI3K) by Western Blot. Glucose metabolism, insulin, lipid, and ACE activity disorders observed with obesity were minimized by Losartan. Moreover, obesity was associated with increased SBP, myocardial hypertrophy, interstitial fibrosis and improved systolic performance; these effects were also minimized with Losartan. On a molecular level, OB exhibited higher ERK, Tyr-phosphorylated βIR, and PI3K expression, and reduced myocardial angiotensin and JNK expression. ERK and JNK expression were regulated in the presence of Losartan, while angiotensin, Tyr-βRI, total and Tyr-phosphorylated PI3K expression were elevated in the OBL group. Angiotensin II blockade with Losartan attenuates obesity-induced metabolic and cardiovascular changes.
Diet-induced obesity in rats leads to a decrease in sperm motility
Background Obesity is rapidly becoming a worldwide epidemic that affects children and adults. Some studies have shown a relationship between obesity and infertility, but until now it remains controversial. Thus, the aim of the present study was to investigate the effect of high-fat diet-induced obesity on male reproductive parameters. Methods In a first experiment, male Wistar rats were fed a high-fat diet (HFD) or standard chow (SD) for 15, 30 or 45 weeks, after which they were evaluated by adiposity index, serum leptin levels, reproductive organ weights and sperm counts. In a second experiment, rats received HFD or SD only for 15 weeks, long enough to cause obesity. Sexual hormones and sexual behavior were evaluated in these animals, as well as fertility after natural mating. Another group of rats was submitted to motility analysis and fertility evaluation after in utero insemination. Results After 15, 30 or 45 weeks, HFD-fed animals presented significant increases in obesity index and serum leptin levels. Reproductive organ weights and sperm counts in the testis and epididymis were similar between the two groups at all timepoints studied. Sexual behavior was not altered by the diet regimen, and HFD fertility after natural mating was also similar to SD-fed animals. Intergroup testosterone levels were also comparable, but estradiol levels were increased in HFD rats. Furthermore, sperm quality was reduced in HFD animals as evidenced by their decreased percentage of sperm with progressive movement. This altered motility parameter was followed by a trend toward reduction in fertility potential after artificial in utero insemination. Conclusions The results reported herein showed that obesity can affect sperm quality, by reducing sperm motility, without affecting other sperm parameters. The low sperm quality caused a slight reduction in fertility potential, showing that obesity may lead to impairment in male fertility.
Rutin administration attenuates myocardial dysfunction in diabetic rats
Background Oxidative stress plays a major role in diabetic cardiomyopathy pathogenesis. Anti-oxidant therapy has been investigated in preventing or treating several diabetic complications. However, anti-oxidant action on diabetic-induced cardiac remodeling is not completely clear. This study evaluated the effects of rutin, a flavonoid, on cardiac and myocardial function in diabetic rats. Methods Wistar rats were assigned into control (C, n = 14); control-rutin (C-R, n = 14); diabetes mellitus (DM, n = 16); and DM-rutin (DM-R, n = 16) groups. Seven days after inducing diabetes (streptozotocin, 60 mg/kg, i.p.), rutin was injected intraperitoneally once a week (50 mg/kg) for 7 weeks. Echocardiogram was performed and myocardial function assessed in left ventricular (LV) papillary muscles. Serum insulin concentration was measured by ELISA. Statistics: One-way ANOVA and Tukey’s post hoc test. Results Glycemia was higher in DM than DM-R and C and in DM-R than C-R. Insulin concentration was lower in diabetic groups than controls (C 2.45 ± 0.67; C-R 2.09 ± 0.52; DM 0.59 ± 0.18; DM-R 0.82 ± 0.21 ng/mL). Echocardiogram showed no differences between C-R and C. DM had increased LV systolic diameter compared to C, and increased left atrium diameter/body weight (BW) ratio and LV mass/BW ratio compared to C and DM-R. Septal wall thickness, LV diastolic diameter/BW ratio, and relative wall thickness were lower in DM-R than DM. Fractional shortening and posterior wall shortening velocity were lower in DM than C and DM-R. In papillary muscle preparation, DM and DM-R presented higher time to peak tension and time from peak tension to 50% relaxation than controls; time to peak tension was lower in DM-R than DM. Under 0.625 and 1.25 mM extracellular calcium concentrations, DM had higher developed tension than C. Conclusion Rutin attenuates cardiac remodeling and left ventricular and myocardial dysfunction caused by streptozotocin-induced diabetes mellitus.
Diets rich in saturated and polyunsaturated fatty acids: metabolic shifting and cardiac health
The aim of this study was to determine the effects of diets rich in saturated and polyunsaturated fatty acids on metabolic pathways and the relation of metabolic shifting to oxidative stress in cardiac tissue. Male Wistar rats (age, 60 d; n = 10) were fed with a control low-fat diet, a diet rich in saturated fatty acids (SFAs), or a diet rich in polyunsaturated fatty acids (PUFAs). After 5 wk of treatment, sera were used for protein and lipid determinations. Protein, glycogen, triacylglycerol, lactate dehydrogenase, citrate synthase, β-hydroxyacyl coenzyme-A dehydrogenase, catalase, glutathione peroxidase, superoxide dismutase, lipoperoxide, and lipid hydroperoxide were measured in cardiac tissue. The SFA group had higher triacylglycerol, cholesterol, low-density lipoprotein cholesterol, and atherogenic index (ratio of cholesterol to high-density lipoprotein) than did the PUFA and control groups. The PUFA group had low serum cholesterol, triacylglycerol, and low-density lipoprotein cholesterol as compared with the SFA group. SFA increased myocardial lipid hydroperoxide and diminished glutathione peroxidase. Despite the beneficial effects on serum lipids, the PUFA diet led to the highest levels of myocardial lipoperoxide and lipid hydroperoxide and diminished superoxide dismutase and catalase activities. The PUFA effects were related to increased feed efficiency, increased susceptibility to lipoperoxidation, and metabolic shifting in cardiac tissue. PUFA elevated triacylglycerol levels and decreased myocardial glycogen concentrations. The ratios of lactate dehydrogenase to citrate synthase and β-hydroxyacyl coenzyme-A dehydrogenase to citrate synthase were increased, indicating myocardial reduction of tricarboxylic acid cycle. PUFAs have been recommended as a therapeutic measure in preventive medicine to lower serum cholesterol, but PUFAs increased oxidative stress in the heart by providing cardiac susceptibility to lipoperoxidation and shifting the metabolic pathway for energy production. The control diet, which was much lower in calories and fat, produced better overall clinical outcomes, better fat profiles, and less oxidative stress than did the diets rich in fatty acids.
Landscape of heart proteome changes in a diet-induced obesity model
Obesity is a pandemic associated with a high incidence of cardiovascular disease; however, the mechanisms are not fully elucidated. Proteomics may provide a more in-depth understanding of the pathophysiological mechanisms and contribute to the identification of potential therapeutic targets. Thus, our study evaluated myocardial protein expression in healthy and obese rats, employing two proteomic approaches. Male Wistar rats were established in two groups (n = 13/group): control diet and Western diet fed for 41 weeks. Obesity was determined by the adipose index, and cardiac function was evaluated in vivo by echocardiogram and in vitro by isolated papillary muscle analysis. Proteomics was based on two-dimensional gel electrophoresis (2-DE) along with mass spectrometry identification, and shotgun proteomics with label-free quantification. The Western diet was efficient in triggering obesity and impaired contractile function in vitro ; however, no cardiac dysfunction was observed in vivo . The combination of two proteomic approaches was able to increase the cardiac proteomic map and to identify 82 differentially expressed proteins involved in different biological processes, mainly metabolism. Furthermore, the data also indicated a cardiac alteration in fatty acids transport, antioxidant defence, cytoskeleton, and proteasome complex, which have not previously been associated with obesity. Thus, we define a robust alteration in the myocardial proteome of diet-induced obese rats, even before functional impairment could be detected in vivo by echocardiogram.
Monosodium glutamate in standard and high-fiber diets: metabolic syndrome and oxidative stress in rats
This study determined the effects of adding monosodium glutamate (MSG) to a standard diet and a fiber-enriched diet on glucose metabolism, lipid profile, and oxidative stress in rats. Male Wistar rats (65 ± 5 g, n = 8) were fed a standard diet (control), a standard diet supplemented with 100 g of MSG per kilogram of rat body weight, a diet rich in fiber, or a diet rich in fiber supplemented with 100 g of MSG per kilogram of body weight. After 45 d of treatment, sera were analyzed for concentrations of insulin, leptin, glucose, triacylglycerol, lipid hydroperoxide, and total antioxidant substances. A homeostasis model assessment index was estimated to characterize insulin resistance. Voluntary food intake was higher and feed efficiency was lower in animals fed the standard diet supplemented with MSG than in those fed the control, fiber-enriched, or fiber- and MSG-enriched diet. The MSG group had metabolic dysfunction characterized by increased levels of glucose, triacylglycerol, insulin, leptin, and homeostasis model assessment index. The adverse effects of MSG were related to an imbalance between the oxidant and antioxidant systems. The MSG group had increased levels of lipid hydroperoxide and decreased levels of total antioxidant substances. Levels of triacylglycerol and lipid hydroperoxide were decreased in rats fed the fiber-enriched and fiber- and MSG-enriched diets, whereas levels of total antioxidant substances were increased in these animals. MSG added to a standard diet increased food intake. Overfeeding induced metabolic disorders associated with oxidative stress in the absence of obesity. The fiber-enriched diet prevented changes in glucose, insulin, leptin, and triacylglycerol levels that were seen in the MSG group. Because the deleterious effects of MSG, i.e., induced overfeeding, were not seen in the animals fed the fiber-enriched diets, it can be concluded that fiber supplementation is beneficial by discouraging overfeeding and improving oxidative stress that is induced by an MSG diet.
Extensive impact of saturated fatty acids on metabolic and cardiovascular profile in rats with diet-induced obesity: a canonical analysis
Background Although hypercaloric interventions are associated with nutritional, endocrine, metabolic, and cardiovascular disorders in obesity experiments, a rational distinction between the effects of excess adiposity and the individual roles of dietary macronutrients in relation to these disturbances has not previously been studied. This investigation analyzed the correlation between ingested macronutrients (including sucrose and saturated and unsaturated fatty acids) plus body adiposity and metabolic, hormonal, and cardiovascular effects in rats with diet-induced obesity. Methods Normotensive Wistar - Kyoto rats were submitted to Control (CD; 3.2 Kcal/g) and Hypercaloric (HD; 4.6 Kcal/g) diets for 20 weeks followed by nutritional evaluation involving body weight and adiposity measurement. Metabolic and hormonal parameters included glycemia, insulin, insulin resistance, and leptin. Cardiovascular analysis included systolic blood pressure profile, echocardiography, morphometric study of myocardial morphology, and myosin heavy chain (MHC) protein expression. Canonical correlation analysis was used to evaluate the relationships between dietary macronutrients plus adiposity and metabolic, hormonal, and cardiovascular parameters. Results Although final group body weights did not differ, HD presented higher adiposity than CD. Diet induced hyperglycemia while insulin and leptin levels remained unchanged. In a cardiovascular context, systolic blood pressure increased with time only in HD. Additionally, in vivo echocardiography revealed cardiac hypertrophy and improved systolic performance in HD compared to CD; and while cardiomyocyte size was unchanged by diet, nuclear volume and collagen interstitial fraction both increased in HD. Also HD exhibited higher relative β-MHC content and β/α-MHC ratio than their Control counterparts. Importantly, body adiposity was weakly associated with cardiovascular effects, as saturated fatty acid intake was directly associated with most cardiac remodeling measurements while unsaturated lipid consumption was inversely correlated with these effects. Conclusion Hypercaloric diet was associated with glycemic metabolism and systolic blood pressure disorders and cardiac remodeling. These effects directly and inversely correlated with saturated and unsaturated lipid consumption, respectively.
Effects of AT1 receptor antagonism on interstitial and ultrastructural remodeling of heart in response to a hypercaloric diet
Palatable hypercaloric feeding has been associated with angiotensin‐II type 1 receptor (AT1R) stimulation and cardiac remodeling. This study analyzed whether AT1R antagonism attenuates cardiac remodeling in rats subjected to a palatable hypercaloric diet. Male Wistar‐Kyoto rats were subjected to a commercial standard rat chow (CD) or a palatable hypercaloric diet (HD) for 35 weeks and then allocated into four groups: CD, CL, HD, and HL; L groups received losartan in drinking water (30 mg/kg/day) for 5 weeks. Body weight, adiposity, and glycemia were evaluated. The cardiovascular study included echocardiography, and myocardial morphometric and ultrastructural evaluation. Myocardial collagen isoforms Type I and III were analyzed by Western blot. Both HD and HL had higher adiposity than their respective controls. Cardiomyocyte cross‐sectional‐area (CD 285 ± 49; HD 344 ± 91; CL 327 ± 49; HL 303 ± 49 μm2) and interstitial collagen fractional area were significantly higher in HD than CD and unchanged by losartan. HD showed marked ultrastructural alterations such as myofilament loss, and severe mitochondrial swelling. CL presented higher Type I collagen expression when compared to CD and HL groups. The ultrastructural changes and type I collagen expression were attenuated by losartan in HL. Losartan attenuates systolic dysfunction and ultrastructural abnormalities without changing myocardial interstitial remodeling in rats subjected to a palatable hypercaloric diet. Diet reduced type I collagen expression in the heart. The ultrastructural changes and type I collagen expression promoted by high‐fat and hypercaloric diet were attenuated by AT1 antagonism.
Saturated high‐fat diet‐induced obesity increases adenylate cyclase of myocardial β‐adrenergic system and does not compromise cardiac function
Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β‐adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high‐fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1‐ and β2‐adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA. Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high‐fat diet‐induced obesity was not effective in triggering cardiac dysfunction and impair the beta‐adrenergic signaling. The aim of this study was to test the hypothesis that obesity promotes cardiac dysfunction due to changes in components of myocardial β‐adrenergic pathway. Obese rats showed higher protein levels of adenylate cyclase, whereas the other components were unchanged. These results suggest that saturated high‐fat diet‐induced obesity was not effective in triggering cardiac dysfunction and impair the beta‐adrenergic signaling.