Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
16
result(s) for
"Ciesla, Allison Avrich"
Sort by:
Impact of accounting for correlation between COVID-19 and influenza vaccination in a COVID-19 vaccine effectiveness evaluation using a test-negative design
by
Rowley, Elizabeth A.K.
,
Reese, Sarah E.
,
Ciesla, Allison Avrich
in
Age groups
,
Allergy and Immunology
,
Bias
2023
Test-negative-design COVID-19 vaccine effectiveness (VE) studies use symptomatic SARS-CoV-2-positive individuals as cases and symptomatic SARS-CoV-2-negative individuals as controls to evaluate COVID-19 VE. To evaluate the potential bias introduced by the correlation of COVID-19 and influenza vaccination behaviors, we assessed changes in estimates of VE of bivalent vaccines against COVID-19-associated hospitalizations and emergency department/urgent care (ED/UC) encounters when considering influenza vaccination status or including or excluding influenza-positive controls using data from the multi-state VISION vaccine effectiveness network. Analyses included encounters during October 2022 – February 2023, a period of SARS-CoV-2 and influenza cocirculation. When considering influenza vaccination status or including or excluding influenza-positive controls, COVID-19 VE estimates were robust, with most VE estimates against COVID-19-associated hospitalization and ED/UC encounters changing less than 5 percentage points. Higher proportions of influenza-positive patients among controls, influenza vaccination coverage, or VE could impact these findings; the potential bias should continue to be assessed.
Journal Article
Effectiveness of the Original Monovalent and Bivalent COVID-19 Vaccines Against COVID-19–Associated Emergency Department and Urgent Care Encounters in Pregnant Persons Who Were Not Immunocompromised: VISION Network, June 2022–August 2023
2024
Abstract
Pregnant people face increased risk of severe COVID-19. Current guidelines recommend updated COVID-19 vaccination (2023–2024) for those aged ≥6 months, irrespective of pregnancy status. To refine recommendations for pregnant people, further data are needed. Using a test-negative design, we evaluated COVID-19 vaccine effectiveness against medically attended COVID-19 with COVID-19–like illness among pregnant people aged 18 to 45 years during June 2022 to August 2023. When doses were received during pregnancy, vaccine effectiveness was 52% (95% CI, 29%–67%); when received <6 months prior to pregnancy, 28% (95% CI, 11%–42%); and when received ≥6 months prior to pregnancy, 6% (95% CI, −11% to 21%). Pregnant people should stay up-to-date with recommended COVID-19 vaccination.
Journal Article
Respiratory syncytial virus (RSV) vaccine effectiveness against RSV-associated hospitalisations and emergency department encounters among adults aged 60 years and older in the USA, October, 2023, to March, 2024: a test-negative design analysis
2024
Respiratory syncytial virus vaccines first recommended for use during 2023 were efficacious against lower respiratory tract disease in clinical trials. Limited real-world data regarding respiratory syncytial virus vaccine effectiveness are available. To inform vaccine policy and address gaps in evidence from the clinical trials, we aimed to assess the effectiveness against respiratory syncytial virus-associated hospitalisations and emergency department encounters among adults aged at least 60 years.
We conducted a test-negative design analysis in an electronic health records-based network in eight states in the USA, including hospitalisations and emergency department encounters with respiratory syncytial virus-like illness among adults aged at least 60 years who underwent respiratory syncytial virus testing from Oct 1, 2023, to March 31, 2024. Respiratory syncytial virus vaccination status at the time of the encounter was derived from electronic health record documentation, state and city immunisation registries, and, for some sites, medical claims. Vaccine effectiveness was estimated by immunocompromise status, comparing the odds of vaccination among respiratory syncytial virus-positive case patients and respiratory syncytial virus-negative control patients, and adjusting for age, race and ethnicity, sex, calendar day, social vulnerability index, number of underlying non-respiratory medical conditions, presence of respiratory underlying medical conditions, and geographical region.
Among 28 271 hospitalisations for respiratory syncytial virus-like illness among adults aged at least 60 years without immunocompromising conditions, vaccine effectiveness was 80% (95% CI 71–85) against respiratory syncytial virus-associated hospitalisations, and vaccine effectiveness was 81% (52–92) against respiratory syncytial virus-associated critical illness (ICU admission or death, or both). Among 8435 hospitalisations for respiratory syncytial virus-like illness among adults with immunocompromising conditions, vaccine effectiveness was 73% (48–85) against associated hospitalisation. Among 36 521 emergency department encounters for respiratory syncytial virus-like illness among adults aged at least 60 years without an immunocompromising condition, vaccine effectiveness was 77% (70–83) against respiratory syncytial virus-associated emergency department encounters. Vaccine effectiveness estimates were similar by age group and product type.
Respiratory syncytial virus vaccination was effective in preventing respiratory syncytial virus-associated hospitalisations and emergency department encounters among adults aged at least 60 years in the USA during the 2023–24 respiratory syncytial virus season, which was the first season after respiratory syncytial virus vaccine was approved.
The Centers for Disease Control and Prevention.
Journal Article
Effectiveness of Bivalent mRNA Vaccines in Preventing Symptomatic SARS-CoV-2 Infection — Increasing Community Access to Testing Program, United States, September–November 2022
by
Fleming-Dutra, Katherine E.
,
Schrag, Stephanie J.
,
Verani, Jennifer R.
in
Adolescent
,
Adult
,
Age groups
2022
On September 1, 2022, bivalent COVID-19 mRNA vaccines, composed of components from the SARS-CoV-2 ancestral and Omicron BA.4/BA.5 strains, were recommended by the Advisory Committee on Immunization Practices (ACIP) to address reduced effectiveness of COVID-19 monovalent vaccines during SARS-CoV-2 Omicron variant predominance (1). Initial recommendations included persons aged ≥12 years (Pfizer-BioNTech) and ≥18 years (Moderna) who had completed at least a primary series of any Food and Drug Administration-authorized or -approved monovalent vaccine ≥2 months earlier (1). On October 12, 2022, the recommendation was expanded to include children aged 5-11 years. At the time of recommendation, immunogenicity data were available from clinical trials of bivalent vaccines composed of ancestral and Omicron BA.1 strains; however, no clinical efficacy data were available. In this study, effectiveness of the bivalent (Omicron BA.4/BA.5-containing) booster formulation against symptomatic SARS-CoV-2 infection was examined using data from the Increasing Community Access to Testing (ICATT) national SARS-CoV-2 testing program.* During September 14-November 11, 2022, a total of 360,626 nucleic acid amplification tests (NAATs) performed at 9,995 retail pharmacies for adults aged ≥18 years, who reported symptoms consistent with COVID-19 at the time of testing and no immunocompromising conditions, were included in the analysis. Relative vaccine effectiveness (rVE) of a bivalent booster dose compared with that of ≥2 monovalent vaccine doses among persons for whom 2-3 months and ≥8 months had elapsed since last monovalent dose was 30% and 56% among persons aged 18-49 years, 31% and 48% among persons aged 50-64 years, and 28% and 43% among persons aged ≥65 years, respectively. Bivalent mRNA booster doses provide additional protection against symptomatic SARS-CoV-2 in immunocompetent persons who previously received monovalent vaccine only, with relative benefits increasing with time since receipt of the most recent monovalent vaccine dose. Staying up to date with COVID-19 vaccination, including getting a bivalent booster dose when eligible, is critical to maximizing protection against COVID-19 (1).
Journal Article
Early Estimates of Bivalent mRNA Booster Dose Vaccine Effectiveness in Preventing Symptomatic SARS-CoV-2 Infection Attributable to Omicron BA.5– and XBB/XBB.1.5–Related Sublineages Among Immunocompetent Adults — Increasing Community Access to Testing Program, United States, December 2022–January 2023
by
Scobie, Heather M.
,
Fleming-Dutra, Katherine E.
,
Verani, Jennifer R.
in
Adult
,
Adults
,
Coronaviruses
2023
The SARS-CoV-2 Omicron sublineage XBB was first detected in the United States in August 2022.* XBB together with a sublineage, XBB.1.5, accounted for >50% of sequenced lineages in the Northeast by December 31, 2022, and 52% of sequenced lineages nationwide as of January 21, 2023. COVID-19 vaccine effectiveness (VE) can vary by SARS-CoV-2 variant; reduced VE has been observed against some variants, although this is dependent on the health outcome of interest. The goal of the U.S. COVID-19 vaccination program is to prevent severe disease, including hospitalization and death (1); however, VE against symptomatic infection can provide useful insight into vaccine protection against emerging variants in advance of VE estimates against more severe disease. Data from the Increasing Community Access to Testing (ICATT) national pharmacy program for SARS-CoV-2 testing were analyzed to estimate VE of updated (bivalent) mRNA COVID-19 vaccines against symptomatic infection caused by BA.5-related and XBB/XBB.1.5-related sublineages among immunocompetent adults during December 1, 2022–January 13, 2023. Reduction or failure of spike gene (S-gene) amplification (SGTF) in real-time reverse transcription–polymerase chain reaction (RT-PCR) was used as a proxy indicator of infection with likely BA.5-related sublineages and S-gene target presence (SGTP) of infection with likely XBB/XBB.1.5-related sublineages (2). Among 29,175 nucleic acid amplification tests (NAATs) with SGTF or SGTP results available from adults who had previously received 2–4 monovalent COVID-19 vaccine doses, the relative VE of a bivalent booster dose given 2–3 months earlier compared with no bivalent booster in persons aged 18–49 years was 52% against symptomatic BA.5 infection and 48% against symptomatic XBB/XBB.1.5 infection. As new SARS-CoV-2 variants emerge, continued vaccine effectiveness monitoring is important. Bivalent vaccines appear to provide additional protection against symptomatic BA.5-related sublineage and XBB/XBB.1.5-related sublineage infections in persons who had previously received 2, 3, or 4 monovalent vaccine doses. All persons should stay up to date with recommended COVID-19 vaccines, including receiving a bivalent booster dose when they are eligible.
Journal Article
Early Estimates of Updated 2023–2024 (Monovalent XBB.1.5) COVID-19 Vaccine Effectiveness Against Symptomatic SARS-CoV-2 Infection Attributable to Co-Circulating Omicron Variants Among Immunocompetent Adults — Increasing Community Access to Testing Program, United States, September 2023–January 2024
2024
On September 12, 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (updated) COVID-19 vaccination with a monovalent XBB.1.5-derived vaccine for all persons aged ≥6 months to prevent COVID-19, including severe disease. During fall 2023, XBB lineages co-circulated with JN.1, an Omicron BA.2.86 lineage that emerged in September 2023. These variants have amino acid substitutions that might increase escape from neutralizing antibodies. XBB lineages predominated through December 2023, when JN.1 became predominant in the United States. Reduction or failure of spike gene (S-gene) amplification (i.e., S-gene target failure [SGTF]) in real-time reverse transcription-polymerase chain reaction testing is a time-dependent, proxy indicator of JN.1 infection. Data from the Increasing Community Access to Testing SARS-CoV-2 pharmacy testing program were analyzed to estimate updated COVID-19 vaccine effectiveness (VE) (i.e., receipt versus no receipt of updated vaccination) against symptomatic SARS-CoV-2 infection, including by SGTF result. Among 9,222 total eligible tests, overall VE among adults aged ≥18 years was 54% (95% CI = 46%-60%) at a median of 52 days after vaccination. Among 2,199 tests performed at a laboratory with SGTF testing, VE 60-119 days after vaccination was 49% (95% CI = 19%-68%) among tests exhibiting SGTF and 60% (95% CI = 35%-75%) among tests without SGTF. Updated COVID-19 vaccines provide protection against symptomatic infection, including against currently circulating lineages. CDC will continue monitoring VE, including for expected waning and against severe disease. All persons aged ≥6 months should receive an updated COVID-19 vaccine dose.
Journal Article
Cohort profile: Understanding Pregnancy Signals and Infant Development (UPSIDE): a pregnancy cohort study on prenatal exposure mechanisms for child health
2021
PurposeExtensive research suggests that maternal prenatal distress is reliably related to perinatal and child health outcomes—which may persist into adulthood. However, basic questions remain regarding mechanisms involved. To better understand these mechanisms, we developed the Understanding Pregnancy Signals and Infant Development (UPSIDE) cohort study, which has several distinguishing features, including repeated assessments across trimesters, analysis of multiple biological pathways of interest, and incorporation of placental structure and function as mediators of child health outcomes.ParticipantsWomen with normal risk pregnancies were recruited at <14 weeks gestation. Study visits occurred in each trimester and included extensive psychological, sociodemographic, health behaviour and biospecimen collection. Placenta and cord blood were collected at birth. Child visits (ongoing) occur at birth and 1, 6, 12, 24, 36 and 48 months of age and use standard anthropometric, clinical, behavioural, biological and neuroimaging methods to assess child physical and neurodevelopment.Findings to dateWe recruited 326 pregnancies; 294 (90%) were retained through birth. Success rates for prenatal biospecimen collection were high across all trimesters (96%–99% for blood, 94%–97% for urine, 96%–99% for saliva, 96% of placentas, 88% for cord blood and 93% for buccal swab). Ninety-four per cent of eligible babies (n=277) participated in a birth examination; postnatal visits are ongoing.Future plansThe current phase of the study follows children through age 4 to examine child neurodevelopment and physical development. In addition, the cohort participates in the National Institutes of Health’s Environmental influences on Child Health Outcomes programme, a national study of 50 000 families examining early environmental influences on perinatal outcomes, neurodevelopment, obesity and airway disease. Future research will leverage the rich repository of biological samples and clinical data to expand research on the mechanisms of child health outcomes in relation to environmental chemical exposures, genetics and the microbiome.
Journal Article
Effectiveness of Bivalent mRNA Vaccines in Preventing Symptomatic SARS‐CoV‐2 Infection—Increasing Community Access to Testing Program, United States, January–September 2023
2024
Background On September 2, 2022, bivalent COVID‐19 mRNA vaccines, were recommended to address reduced effectiveness of COVID‐19 monovalent vaccines during SARS‐CoV‐2 Omicron variant predominance. Methods Using national pharmacy‐based SARS‐CoV‐2 testing program data from January 15 to September 11, 2023, this test‐negative, case–control design study assessed bivalent COVID‐19 vaccine effectiveness (VE) against symptomatic infection. Results VE against symptomatic infection of a bivalent dose between 2 weeks and 1 month after bivalent vaccination ranged from 46% (95% CI: 38%–52%) for those aged ≥ 65 years to 61% (95% CI 41%–75%) for those aged 12–17 years. Conclusion Bivalent vaccines protected against symptomatic infection. However, effectiveness waned over time, emphasizing the need to stay up to date with COVID‐19 vaccination.
Journal Article
Effectiveness of Booster Doses of Monovalent mRNA COVID-19 Vaccine Against Symptomatic Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Children, Adolescents, and Adults During Omicron Subvariant BA.2/BA.2.12.1 and BA.4/BA.5 Predominant Periods
by
Britton, Amadea
,
Smith, Zachary R
,
Wiegand, Ryan E
in
COVID-19 vaccines
,
Infections
,
Severe acute respiratory syndrome coronavirus 2
2023
Abstract
Background
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) BA.2/BA.2.12.1 and BA.4/BA.5 subvariants have mutations associated with increased capacity to evade immunity when compared with prior variants. We evaluated mRNA monovalent booster dose effectiveness among persons ≥5 years old during BA.2/BA.2.12.1 and BA.4/BA.5 predominance.
Methods
A test-negative, case-control analysis included data from 12 148 pharmacy SARS-CoV-2 testing sites nationwide for persons aged ≥5 years with ≥1 coronavirus disease-2019 (COVID-19)-like symptoms and a SARS-CoV-2 nucleic acid amplification test from April 2 to August 31, 2022. Relative vaccine effectiveness (rVE) was estimated comparing 3 doses of COVID-19 mRNA monovalent vaccine to 2 doses; for tests among persons ≥50 years, rVE estimates also compared 4 doses to 3 doses (≥4 months since third dose).
Results
A total of 760 986 test-positive cases and 817 876 test-negative controls were included. Among individuals ≥12 years, rVE of 3 versus 2 doses ranged by age group from 45% to 74% at 1-month post vaccination and waned to 0% by 5–7 months post vaccination during the BA.4/BA.5 period.
Adults aged ≥50 years (fourth dose eligible) who received 4 doses were less likely to have symptomatic SARS-CoV-2 infection compared with those with 3 doses; this rVE remained >0% through at least 3 months since last dose. For those aged ≥65 years, rVE of 4 versus 3 doses 1-month post vaccination was higher during BA.2/BA.2.12.1 (rVE = 49%; 95% confidence interval [CI], 43%–53%) than BA.4/BA.5 (rVE = 40%; 95% CI, 36%–44%). In 50- to 64-year-olds, rVE estimates were similar.
Conclusions
Monovalent mRNA booster doses provided additional protection against symptomatic SARS-CoV-2 infection during BA.2/BA.2.12.1 and BA.4/BA.5 subvariant circulation, but protection waned over time.
Individuals with 1 or 2 monovalent mRNA COVID-19 booster doses were less likely to have symptomatic SARS-CoV-2 infection compared to those without booster doses, during the BA.2/BA.2.12.1 and BA.4/BA.5 predominant subvariant periods.
Journal Article
Preliminary Estimates of Effectiveness of Monovalent mRNA Vaccines in Preventing Symptomatic SARS-CoV-2 Infection Among Children Aged 3–5 Years — Increasing Community Access to Testing Program, United States, July 2022–February 2023
by
Fleming-Dutra, Katherine E.
,
Verani, Jennifer R.
,
Wiegand, Ryan E.
in
2019-nCoV Vaccine mRNA-1273
,
Age groups
,
BNT162 Vaccine
2023
On June 18, 2022, the Advisory Committee on Immunization Practices (ACIP) issued interim recommendations for use of the 2-dose monovalent Moderna COVID-19 vaccine as a primary series for children aged 6 months-5 years* and the 3-dose monovalent Pfizer-BioNTech COVID-19 vaccine as a primary series for children aged 6 months-4 years,
based on safety, immunobridging, and limited efficacy data from clinical trials (1-3). Monovalent mRNA vaccine effectiveness (VE) against symptomatic SARS-CoV-2 infection was evaluated using the Increasing Community Access to Testing (ICATT) program, which provides SARS-CoV-2 testing to persons aged ≥3 years at pharmacy and community-based testing sites nationwide
(4,5). Among children aged 3-5 years with one or more COVID-19-like illness symptoms
for whom a nucleic acid amplification test (NAAT) was performed during August 1, 2022-February 5, 2023, VE of 2 monovalent Moderna doses (complete primary series) against symptomatic infection was 60% (95% CI = 49% to 68%) 2 weeks-2 months after receipt of the second dose and 36% (95% CI = 15% to 52%) 3-4 months after receipt of the second dose. Among symptomatic children aged 3-4 years with NAATs performed during September 19, 2022-February 5, 2023, VE of 3 monovalent Pfizer-BioNTech doses (complete primary series) against symptomatic infection was 31% (95% CI = 7% to 49%) 2 weeks-4 months after receipt of the third dose; statistical power was not sufficient to estimate VE stratified by time since receipt of the third dose. Complete monovalent Moderna and Pfizer-BioNTech primary series vaccination provides protection for children aged 3-5 and 3-4 years, respectively, against symptomatic infection for at least the first 4 months after vaccination. CDC expanded recommendations for use of updated bivalent vaccines to children aged ≥6 months on December 9, 2022 (6), which might provide increased protection against currently circulating SARS-CoV-2 variants (7,8). Children should stay up to date with recommended COVID-19 vaccines, including completing the primary series; those who are eligible should receive a bivalent vaccine dose.
Journal Article