Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
60 result(s) for "Cimini, Domenico"
Sort by:
A Cloud Detection Neural Network Approach for the Next Generation Microwave Sounder Aboard EPS MetOp-SG A1
This work presents an algorithm based on a neural network (NN) for cloud detection to detect clouds and their thermodynamic phase using spectral observations from spaceborne microwave radiometers. A standalone cloud detection algorithm over the ocean and land has been developed to distinguish clear sky versus ice and liquid clouds from microwave sounder (MWS) observations. The MWS instrument—scheduled to be onboard the first satellite of the Eumetsat Polar System Second-Generation (EPS-SG) series, MetOp-SG A1—has a direct inheritance from advanced microwave sounding unit A (AMSU-A) and the microwave humidity sounder (MHS) microwave instruments. Real observations from the MWS sensor are not currently available as its launch is foreseen in 2024. Thus, a simulated dataset of atmospheric states and associated MWS synthetic observations have been produced through radiative transfer calculations with ERA5 real atmospheric profiles and surface conditions. The developed algorithm has been validated using spectral observations from the AMSU-A and MHS sounders. While ERA5 atmospheric profiles serve as references for the model development and its validation, observations from AVHRR cloud mask products provide references for the AMSU-A/MHS model evaluation. The results clearly show the NN algorithm’s high skills to detect clear, ice and liquid cloud conditions against a benchmark. In terms of overall accuracy, the NN model features 92% (88%) on the ocean and 87% (85%) on land, for the MWS (AMSU-A/MHS)-simulated dataset, respectively.
The Evolution of Meteorological Satellite Cloud-Detection Methodologies for Atmospheric Parameter Retrievals
The accurate detection of clouds is an important first step in the processing of remotely sensed satellite data analyses and subsequent cloud model predictions. While initial cloud retrieval technology began with the exploitation of one or two bands of satellite imagery, it has accelerated rapidly in recent years as sensor and retrieval technology, creating a new era in space observation exploration. Additionally, the initial emphasis in satellite retrieval technology focused on cloud detection for cloud forecast models, but more recently, cloud screening in satellite-acquired data is playing an increasingly critical role in the investigation of cloud-free data for the retrieval of soil moisture, vegetation cover, ocean color concentration and sea surface temperatures, as well as the environmental monitoring of a host of products, e.g., atmospheric aerosol data, to study the Earth’s atmospheric and climatic systems. With about 60% of the Earth covered by clouds, on average, it is necessary to accurately detect clouds in remote sensing data to screen cloud contaminate data in remote sensing analyses. In this review, the evolution of cloud-detection methodologies is highlighted with advancement in sensor hardware technology and machine learning algorithmic advances. The review takes into consideration the meteorological sensors usually used for atmospheric parameters estimation (thermodynamic profiles, aerosols, cloud microphysical parameters). Moreover, a discussion is presented on methods for obtaining the cloud-truth data needed to determine the accuracy of these cloud-detection approaches.
Combining Passive Infrared and Microwave Satellite Observations to Investigate Cloud Microphysical Properties: A Review
Clouds play a key role in the Earth’s radiation budget, weather, and hydrological cycle, as well as the radiative and thermodynamic components of the climate system. Spaceborne observations are an essential tool to detect clouds, study cloud–radiation interactions, and explore their microphysical properties. Recent advancements in spatial, spectral, and temporal resolutions of satellite-borne measurements and the increasing variety of orbits and observing geometries offer the opportunity for more efficient and sophisticated retrieval procedures, leading to the more accurate estimation of cloud parameters. However, despite the availability of near-coincident observations of the same atmospheric state, the synergy between the whole set of acquired information is still largely underexplored. The use of synergy is often invoked to optimize the exploitation of the available information, but it is rarely implemented. Indeed, the strategy currently used in most cases is that retrievals are performed separately for each instrument and, only later, the retrieved products are combined. In this framework, therefore, there is a strong need to study and exploit the synergy potential of the instruments currently in orbit or that will be put in orbit in the next few years. This paper reviews the efforts already made in this direction, combining passive infrared and microwave to retrieve cloud microphysical properties. We provide readers with a framework to interpret the state of the art, highlighting the pros and cons of the various approaches currently used with a look to the most promising methodologies to be deployed to address the challenges of this field.
Analysis of Livorno Heavy Rainfall Event: Examples of Satellite-Based Observation Techniques in Support of Numerical Weather Prediction
This study investigates the value of satellite-based observational algorithms in supporting numerical weather prediction (NWP) for improving the alert and monitoring of extreme rainfall events. To this aim, the analysis of the very intense precipitation that affected the city of Livorno on 9 and 10 September 2017 is performed by applying three remote sensing techniques based on satellite observations at infrared/visible and microwave frequencies and by using maps of accumulated rainfall from the weather research and forecasting (WRF) model. The satellite-based observational algorithms are the precipitation evolving technique (PET), the rain class evaluation from infrared and visible observations (RainCEIV) technique and the cloud classification mask coupling of statistical and physics methods (C-MACSP). Moreover, the rain rates estimated by the Italian Weather Radar Network are also considered to get a quantitative evaluation of RainCEIV and PET performance. The statistical assessment shows good skills for both the algorithms (for PET: bias = 1.03, POD = 0.76, FAR = 0.26; for RainCEIV: bias = 1.33, POD = 0.77, FAR = 0.41). In addition, a qualitative comparison among the three technique outputs, rain rate radar maps, and WRF accumulated rainfall maps is also carried out in order to highlight the advantages of the different techniques in providing real-time monitoring, as well as quantitative characterization of rainy areas, especially when rain rate measurements from Weather Radar Network and/or from rain gauges are not available.
Nowcasting Surface Solar Irradiance with AMESIS via Motion Vector Fields of MSG-SEVIRI Data
In this study, we compare different nowcasting techniques based upon the calculation of motion vector fields derived from spectral channels of Meteosat Second Generation—Spinning Enhanced Visible and InfraRed Imager (MSG-SEVIRI). The outputs of the nowcasting techniques are used as inputs to the Advanced Model for Estimation of Surface solar Irradiance from Satellite (AMESIS), for predicting surface solar irradiance up to 2 h in advance. In particular, the first part of the methodology consists in projecting the time evolution of each MSG-SEVIRI channel (for every pixel in the spatial domain) through extrapolation of a displacement vector field obtained by matching similar patterns within two successive MSG-SEVIRI data images. Different ways to implement the above method result in substantial differences in the predicted trajectory, leading to different performances depending on the time interval of interest. All the nowcasting techniques considered here systematically outperform the simple persistence method for all MSG-SEVIRI channels and for each case study used in this work; importantly, this occurs across the entire 2 h period of the forecast. In the second part of the algorithm, the predicted irradiance maps computed with AMESIS from the forecasted radiances, are shown to be in good agreement with irradiances derived from MSG measured radiances and improve on numerical weather model predictions, thus providing a feasible alternative for nowcasting surface solar radiation. The results show that the mean values for correlation, bias, and root mean square error vary across the time interval, ranging between 0.94, −1 W/m 2 , 61 W/m 2 after 15 min, and 0.73, −18 W/m 2 , 147 W/m 2 after 2 h, respectively.
3D-VAR Data Assimilation of SEVIRI Radiances for the Prediction of Solar Irradiance in Italy Using WRF Solar Mesoscale Model—Preliminary Results
Solar power generation is highly fluctuating due to its dependence on atmospheric conditions. The integration of this variable resource into the energy supply system requires reliable predictions of the expected power production as a basis for management and operation strategies. This is one of the goals of the Solar Cloud project, funded by the Italian Ministry of Economic Development (MISE)—to provide detailed forecasts of solar irradiance variables to operators and organizations operating in the solar energy industry. The Institute of Methodologies for Environmental Analysis of the National Research Council (IMAA-CNR), participating to the project, implemented an operational chain that provides forecasts of all the solar irradiance variables at high temporal and horizontal resolution using the numerical weather prediction Advanced Research Weather Research and Forecasting (WRF-ARW) Solar version 3.8.1 released by the National Center for Atmospheric Research (NCAR) in August 2016. With the aim of improving the forecast of solar irradiance, the three-dimensional (3D-Var) data assimilation was tested to assimilate radiances from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) geostationary satellite into WRF Solar. To quantify the impact, the model output is compared against observational data. Hourly Global Horizontal Irradiance (GHI) is compared with ground-based observations from Regional Agency for the Protection of the Environment (ARPA) and with MSG Shortwave Solar Irradiance estimations, while WRF Solar cloud coverage is compared with Cloud Mask by MSG. A preliminary test has been performed in clear sky conditions to assess the capability of the model to reproduce the diurnal cycle of the solar irradiance. The statistical scores for clear sky conditions show a positive performance of the model with values comparable to the instrument uncertainty and a correlation of 0.995. For cloudy sky, the solar irradiance and the cloud cover are better simulated when the SEVIRI radiances are assimilated, especially in the short range of the simulation. For the cloud cover, the Mean Bias Error one hour after the assimilation time is reduced from 41.62 to 20.29 W/m2 when the assimilation is activated. Although only two case studies are considered here, the results indicate that the assimilation of SEVIRI radiance improves the performance of WRF Solar especially in the first 3 hour forecast.
Convective Initiation Proxies for Nowcasting Precipitation Severity Using the MSG-SEVIRI Rapid Scan
In this study, we investigate the ability of several convective initiation predictors based on satellite infrared observations to distinguish convective weak precipitation events from those leading to intense rainfall. The two types of precipitation are identified according to hourly rainfall, respectively less than 10 mm and greater than 30 mm. The analysis is conducted on a representative dataset containing 92 severe and weak precipitation events collected over the Italian peninsula in the period 2016–2019 over June-September. The events are selected to be short-lived (i.e., less than 12 h) and localized (i.e., less than 50×50km2). Italian National Radar Network products, namely the Vertical Maximum Intensity (VMI) and the Surface Rain Total (SRT) variables (from Dewetra Platform by CIMA, Italian Civil Protection Department), are used as indicators of convection (i.e., VMI greater than 35 dBZ echo intensity) and cumulated rainfall, respectively. The considered predictors are linear combinations of spectral infrared channels measured with the Rapid Scan Service (RSS) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard Meteosat Second Generation (MSG) geostationary satellites. We select a 5×5 SEVIRI pixel-box centered on the storm core and perform a statistical analysis of the predictors up to 2.5 h around the event occurrence. We demonstrate that some of the proxies—describing growth and glaciation storm properties—show few degrees contrast between severe and nonsevere precipitation cases, hence carrying significant information to help discriminate the two types. We design a threshold scheme based on the three most informative predictors to distinguish weak and strong precipitation events. This analysis yields accuracy higher than 0.6 and the probability of false detection lower than 0.26; in terms of reducing false alarms, this method shows slight better performances compared to related works, at the expense of a lower probability of detection. The overall results, however, show limited capability for these infrared proxies as stand-alone predictors to distinguish severe from nonsevere precipitation events. Nonetheless, these may serve as additional tools to reduce the false alarm ratio in nowcasting algorithms for convective orographic storms. This study also provides further insight into the correlation between early infrared fields signatures prior to convection and subsequent evolution of the storms, extending previous works in this field.
Fog Detection Based on Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager High Resolution Visible Channel
In this study, the Meteosat Second Generation (MSG)—Spinning Enhanced Visible and Infrared Imager (SEVIRI) High Resolution Visible channel (HRV) is used in synergy with the narrow band MSG-SEVIRI channels for daytime fog detection. A new algorithm, named MSG-SEVIRI SatFog, has been designed and implemented. MSG-SEVIRI SatFog provides the indication of the presence of fog in near real time and at the high spatial resolution of the HRV channel. The HRV resolution is useful for detecting small scale daytime fog that would be missed in the MSG-SEVIRI low spatial resolution channels. By combining textural, physical and tonal tests, a distinction between fog and low stratus is performed for pixels identified as low/middle clouds or clear by the Classification-MAsk Coupling of Statistical and Physical Methods (C-MACSP) cloud detection algorithm. Suitable thresholds have been determined using a specific dataset covering different geographical areas, seasons and time of the day. MSG-SEVIRI SatFog is evaluated against METeorological Aerodrome Reports (METAR) data observations. Evaluation results in an accuracy of 69.9%, a probability of detection of 68.7%, a false alarm ratio of 31.3% and a probability of false detection of 30.0%.
Improvement in Surface Solar Irradiance Estimation Using HRV/MSG Data
The Advanced Model for the Estimation of Surface Solar Irradiance (AMESIS) was developed at the Institute of Methodologies for Environmental Analysis of the National Research Council of Italy (IMAA-CNR) to derive surface solar irradiance from SEVIRI radiometer on board the MSG geostationary satellite. The operational version of AMESIS has been running continuously at IMAA-CNR over all of Italy since 2017 in support to the monitoring of photovoltaic plants. The AMESIS operative model provides two different estimations of the surface solar irradiance: one is obtained considering only the low-resolution channels (SSI_VIS), while the other also takes into account the high-resolution HRV channel (SSI_HRV). This paper shows the difference between these two products against simultaneous ground-based observations from a network of 63 pyranometers for different sky conditions (clear, overcast and partially cloudy). Comparable statistical scores have been obtained for both AMESIS products in clear and cloud situation. In terms of bias and correlation coefficient over partially cloudy sky, better performances are found for SSI_HRV (0.34 W/m2 and 0.995, respectively) than SSI_VIS (−33.69 W/m2 and 0.862) at the expense of the greater run-time necessary to process HRV data channel.
Fog Forecast Using WRF Model Output for Solar Energy Applications
The occurrence of fog often causes errors in the prediction of the incident solar radiation and the power produced by photovoltaic cells. An accurate fog forecast would benefit solar energy producers and grid operators, who could take coordinated actions to reduce the impact of discontinuity, the main drawback of renewable energy sources. Considering that information on discontinuity is crucial to optimize power production estimation and plant management efficiency, in this work, a fog forecast method based on the output of the Weather Research and Forecasting (WRF) numerical model is presented. The areal extension and temporal duration of a fog event are not easy to predict. In fact, there are many physical processes and boundary conditions that cause fog development, such as the synoptic situation, air stability, wind speed, season, aerosol load, orographic influence, humidity and temperature. These make fog formation a complex and rather localized event. Thus, the results of a fog forecast method based on the output variables of the high spatial resolution WRF model strongly depend on the specific site under investigation. In this work, the thresholds are site-specifically designed so that the implemented method can be generalized to other sites after a preliminary meteorological and climatological study. The proposed method is able to predict fog in the 6–30 h interval after the model run start time; it has been evaluated against METeorological Aerodrome Report data relative to seven selected sites, obtaining an average accuracy of 0.96, probability of detection of 0.83, probability of false detection equal to 0.03 and probability of false alarm of 0.18. The output of the proposed fog forecast method can activate (or not) a specific fog postprocessing layer designed to correct the global horizontal irradiance forecasted by the WRF model in order to optimize the forecast of the irradiance reaching the photovoltaic panels surface.