Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
94 result(s) for "Civera, Marco"
Sort by:
Non-Destructive Techniques for the Condition and Structural Health Monitoring of Wind Turbines: A Literature Review of the Last 20 Years
A complete surveillance strategy for wind turbines requires both the condition monitoring (CM) of their mechanical components and the structural health monitoring (SHM) of their load-bearing structural elements (foundations, tower, and blades). Therefore, it spans both the civil and mechanical engineering fields. Several traditional and advanced non-destructive techniques (NDTs) have been proposed for both areas of application throughout the last years. These include visual inspection (VI), acoustic emissions (AEs), ultrasonic testing (UT), infrared thermography (IRT), radiographic testing (RT), electromagnetic testing (ET), oil monitoring, and many other methods. These NDTs can be performed by human personnel, robots, or unmanned aerial vehicles (UAVs); they can also be applied both for isolated wind turbines or systematically for whole onshore or offshore wind farms. These non-destructive approaches have been extensively reviewed here; more than 300 scientific articles, technical reports, and other documents are included in this review, encompassing all the main aspects of these survey strategies. Particular attention was dedicated to the latest developments in the last two decades (2000–2021). Highly influential research works, which received major attention from the scientific community, are highlighted and commented upon. Furthermore, for each strategy, a selection of relevant applications is reported by way of example, including newer and less developed strategies as well.
A Comparative Analysis of Signal Decomposition Techniques for Structural Health Monitoring on an Experimental Benchmark
Signal Processing is, arguably, the fundamental enabling technology for vibration-based Structural Health Monitoring (SHM), which includes damage detection and more advanced tasks. However, the investigation of real-life vibration measurements is quite compelling. For a better understanding of its dynamic behaviour, a multi-degree-of-freedom system should be efficiently decomposed into its independent components. However, the target structure may be affected by (damage-related or not) nonlinearities, which appear as noise-like distortions in its vibrational response. This response can be nonstationary as well and thus requires a time-frequency analysis. Adaptive mode decomposition methods are the most apt strategy under these circumstances. Here, a shortlist of three well-established algorithms has been selected for an in-depth analysis. These signal decomposition approaches—namely, the Empirical Mode Decomposition (EMD), the Hilbert Vibration Decomposition (HVD), and the Variational Mode Decomposition (VMD)—are deemed to be the most representative ones because of their extensive use and favourable reception from the research community. The main aspects and properties of these data-adaptive methods, as well as their advantages, limitations, and drawbacks, are discussed and compared. Then, the potentialities of the three algorithms are assessed firstly on a numerical case study and then on a well-known experimental benchmark, including nonlinear cases and nonstationary signals.
An Application of Instantaneous Spectral Entropy for the Condition Monitoring of Wind Turbines
For economic and environmental reasons, the use of renewable energy sources is a key aspect of the ongoing transition to a sustainable industrialised society. Wind energy represents a major player among these natural, carbon-neutral sources. Nevertheless, wind turbines are often subject to mechanical faults, especially due to ageing. To alleviate Operation and Maintenance costs, Vibration-Based Inspection and Condition Monitoring have been proposed in recent times. This research proposes Instantaneous Spectral Entropy and Continuous Wavelet Transform for anomaly detection and fault diagnosis, departing from gearbox vibration time histories. The approach is validated on experimental data recorded from a turbine suffering bearing failure and total gearbox replacement. From a computational point of view, the proposed algorithm was found to be efficient and therefore even potentially applicable for real-time monitoring.
Instantaneous Spectral Entropy: An Application for the Online Monitoring of Multi-Storey Frame Structures
Damage assessment techniques based on entropy measurements have been recently proposed for the structural health monitoring of civil structures and infrastructures. A quasi-real-time approach, based on the use of instantaneous spectral entropy (ISE) over an uninterrupted stream of data, is discussed here. The methodology is proposed for the detection of sudden damage-related structural changes (more specifically, linear stiffness reductions and nonlinear breathing cracks). The method operates by framing the continuous stream of vibration signals and comparing the single frames to a known baseline. The approach is also suitable for nonstationary signals originating from nonlinearly behaving structures. The procedure is validated on an experimental benchmark: a laboratory-scaled model of a three-storey single-span frame metallic structure. Three different definitions of entropy and six candidate time–frequency/time-scale transforms have been tested to find the optimal settings.
An Unmanned Lighter-Than-Air Platform for Large Scale Land Monitoring
The concept and preliminary design of an unmanned lighter-than-air (LTA) platform instrumented with different remote sensing technologies is presented. The aim is to assess the feasibility of using a remotely controlled airship for the land monitoring of medium sized (up to 107 m2) urban or rural areas at relatively low altitudes (below 1000 m) and its potential convenience with respect to other standard remote and in-situ sensing systems. The proposal includes equipment for high-definition visual, thermal, and hyperspectral imaging as well as LiDAR scanning. The data collected from these different sources can be then combined to obtain geo-referenced products such as land use land cover (LULC), soil water content (SWC), land surface temperature (LSC), and leaf area index (LAI) maps, among others. The potential uses for diffuse structural health monitoring over built-up areas are discussed as well. Several mission typologies are considered.
Using Video Processing for the Full-Field Identification of Backbone Curves in Case of Large Vibrations
Nonlinear modal analysis is a demanding yet imperative task to rigorously address real-life situations where the dynamics involved clearly exceed the limits of linear approximation. The specific case of geometric nonlinearities, where the effects induced by the second and higher-order terms in the strain–displacement relationship cannot be neglected, is of great significance for structural engineering in most of its fields of application—aerospace, civil construction, mechanical systems, and so on. However, this nonlinear behaviour is strongly affected by even small changes in stiffness or mass, e.g., by applying physically-attached sensors to the structure of interest. Indeed, the sensors placement introduces a certain amount of geometric hardening and mass variation, which becomes relevant for very flexible structures. The effects of mass loading, while highly recognised to be much larger in the nonlinear domain than in its linear counterpart, have seldom been explored experimentally. In this context, the aim of this paper is to perform a noncontact, full-field nonlinear investigation of the very light and very flexible XB-1 air wing prototype aluminum spar, applying the well-known resonance decay method. Video processing in general, and a high-speed, optical target tracking technique in particular, are proposed for this purpose; the methodology can be easily extended to any slender beam-like or plate-like element. Obtained results have been used to describe the first nonlinear normal mode of the spar in both unloaded and sensors-loaded conditions by means of their respective backbone curves. Noticeable changes were encountered between the two conditions when the structure undergoes large-amplitude flexural vibrations.
Hierarchical Clustering and Small Baseline Subset Differential Interferometric Synthetic Aperture Radar (SBAS-DInSAR) for Remotely Sensed Building Identification and Risk Prioritisation
The conventional Structural Health Monitoring (SHM) framework focuses on individual structures. However, preliminary studies are required at a large territorial scale to effectively identify the most vulnerable elements. This becomes particularly challenging in urban settings, where numerous buildings of varied shapes, ages, and structural conditions are closely spaced from one another. A twofold task is therefore required: the automated identification and differentiation of various structures, coupled with a ranking system based on perceived structural risk, here assumed to be linked to their deformation patterns. It integrates displacement measurements acquired through the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique, specifically employing the full-resolution Small Baseline Subset (SBAS) approach coupled with Hierarchical Clustering. The effectiveness of this method is successfully demonstrated and validated in two selected areas of Rome, Italy, serving as case studies. The results of this vast-area scale monitoring can be used to select the constructions that need a more in-depth assessment.
Detection and Localization of Multiple Damages through Entropy in Information Theory
According to recent works, entropy measures, and more specifically, spectral entropies, are emerging as an efficient method for the damage assessment of both mechanical systems and civil structures. Specifically, the occurrence of structural system alterations (intended in this work as stiffness reduction) can be detected as a localized change in the signal entropy. Here, the Wiener Entropy (also known as the Spectral Flatness) of strain measurements is proved as a viable tool for single and multiple damage assessment, including damage detection, localization, and severity assessment. A case study from oil & gas engineering, i.e., a finite element model of a buried steel pipeline, is utilized for this aim.
A Comparative Analysis of Optimization Algorithms for Finite Element Model Updating on Numerical and Experimental Benchmarks
Finite Element Model Updating (FEMU) is a common approach to model-based Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) of civil structures and infrastructures. Its application can be further utilized to produce effective digital twins of a permanently monitored structure. The FEMU concept, simple yet effective, involves calibrating and/or updating a numerical model based on the recorded dynamic response of the target system. This enables to indirectly estimate its material parameters, thus providing insight into its mass and stiffness distribution. In turn, this can be used to localize structural changes that may be induced by damage occurrence. However, several algorithms exist in the scientific literature for FEMU purposes. This study benchmarks three well-established global optimization techniques—namely, Generalized Pattern Search, Simulated Annealing, and a Genetic Algorithm application—against a proposed Bayesian sampling optimization algorithm. Although Bayesian optimization is a powerful yet efficient global optimization technique, especially suitable for expensive functions, it is seldom applied to model updating problems. The comparison is performed on numerical and experimental datasets based on one metallic truss structure built in the facilities of Cranfield University. The Bayesian sampling procedure showed high computational accuracy and efficiency, with a runtime of approximately half that of the alternative optimization strategies.
Gaussian Process Regression (GPR)-based missing data imputation and its uses for bridge structural health monitoring
Structural health monitoring (SHM) apparatuses rely on continuous measurement and analysis to assess the safety condition of a target system. However, in field applications, the SHM framework is often hampered by practical issues. Among them, missing data in recorded time series is arguably the most common and most disruptive challenge that can arise. Therefore, imputing missing values is necessary to maintain the integrity and utility of the SHM data. This research work investigates the use of Gaussian Process Regression (GPR) for imputing missing data in ordered time series. In particular, this approach is here proposed and tested for Vibration-Based Monitoring (VBM) and ambient monitoring, with applications to modal parameters and air temperature. Both punctual missing-at-random (MAR) and prolonged missing-not-at-random (MNAR) gaps in the time histories of recorded natural frequencies are analysed. The performance of the proposed GPR-based approach is evaluated on real-life data from field tests on a well-known case study, the KW51 rail bridge. The method is first tested to actual missing values in the dataset. Then, the accuracy is tested using artificially removed data, and the imputed values are compared to the ground truth (i.e., the actual measured data). In the first case, the results show that the complete time series are deemed qualitatively similar to what would be expected by an expert user. The outcomes of the second part quantitatively demonstrate that GPR can accurately impute missing data in modal parameter time series, preserving the statistical properties of the data.