Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
86
result(s) for
"Cláudia T. Codeço"
Sort by:
Assessing mosquito dynamics and dengue transmission in Foz do Iguaçu, Brazil through an enhanced temperature-dependent mathematical model
2025
Dengue fever remains a major public health concern, requiring continuous efforts to mitigate its impact. This study investigates the influence of key temperature-dependent parameters on dengue transmission dynamics in Foz do Iguaçu, a tri-border municipality in southern Brazil, using a mathematical model based on a system of ordinary differential equations. The fitted model aligns well with observed data. To track changes in dengue transmission over time and detect epidemic onset, we calculated the effective reproduction number. Additionally, we explored the potential effects of climate variability on dengue dynamics. Our findings highlight the importance of vector population dynamics, climate, and incidence, offering insights into dengue transmission in Foz do Iguaçu. This research provides a foundation for optimizing intervention strategies in other cities, improving outbreak prediction, and supporting public health efforts in dengue control.
Journal Article
Culling Dogs in Scenarios of Imperfect Control: Realistic Impact on the Prevalence of Canine Visceral Leishmaniasis
by
Werneck, Guilherme L.
,
Codeço, Cláudia T.
,
Silva, Moacyr A.
in
Animals
,
Biology
,
Communicable Disease Control - methods
2013
Visceral leishmaniasis belongs to the list of neglected tropical diseases and is considered a public health problem worldwide. Spatial correlation between the occurrence of the disease in humans and high rates of canine infection suggests that in the presence of the vector, canine visceral leishmaniasis is the key factor for triggering transmission to humans. Despite the control strategies implemented, such as the sacrifice of infected dogs being put down, the incidence of American visceral leishmaniasis remains high in many Latin American countries.
Mathematical models were developed to describe the transmission dynamics of canine leishmaniasis and its control by culling. Using these models, imperfect control scenarios were implemented to verify the possible factors which alter the effectiveness of controlling this disease in practice.
A long-term continuous program targeting both asymptomatic and symptomatic dogs should be effective in controlling canine leishmaniasis in areas of low to moderate transmission (R0 up to 1.4). However, the indiscriminate sacrifice of asymptomatic dogs with positive diagnosis may jeopardize the effectiveness of the control program, if tests with low specificity are used, increasing the chance of generating outrage in the population, and leading to lower adherence to the program. Therefore, culling must be planned accurately and implemented responsibly and never as a mechanical measure in large scale. In areas with higher transmission, culling alone is not an effective control strategy.
Journal Article
Socioeconomic and demographic characterization of an endemic malaria region in Brazil by multiple correspondence analysis
2017
Background
In the process of geographical retraction of malaria, some important endemicity pockets remain. Here, we report results from a study developed to obtain detailed community data from an important malaria hotspot in Latin America (Alto Juruá, Acre, Brazil), to investigate the association of malaria with socioeconomic, demographic and living conditions.
Methods
A household survey was conducted in 40 localities (n = 520) of Mâncio Lima and Rodrigues Alves municipalities, Acre state. Information on previous malaria, schooling, age, gender, income, occupation, household structure, habits and behaviors related to malaria exposure was collected. Multiple correspondence analysis (MCA) was applied to characterize similarities between households and identify gradients. The association of these gradients with malaria was assessed using regression.
Results
The first three dimensions of MCA accounted for almost 50% of the variability between households. The first dimension defined an urban/rurality gradient, where urbanization was associated with the presence of roads, basic services as garbage collection, water treatment, power grid energy, and less contact with the forest. There is a significant association between this axis and the probability of malaria at the household level, OR = 1.92 (1.23–3.02). The second dimension described a gradient from rural settlements in agricultural areas to those in forested areas. Access via dirt road or river, access to electricity power-grid services and aquaculture were important variables. Malaria was at lower risk at the forested area, OR = 0.55 (1.23–1.12). The third axis detected intraurban differences and did not correlate with malaria.
Conclusions
Living conditions in the study area are strongly geographically structured. Although malaria is found throughout all the landscapes, household traits can explain part of the variation found in the odds of having malaria. It is expected these results stimulate further discussions on modelling approaches targeting a more systemic and multi-level view of malaria dynamics.
Journal Article
Measuring the contribution of human mobility to malaria persistence
by
Gomes, Marcelo F. C.
,
Lana, Raquel M.
,
Bastos, Leonardo S.
in
Aquaculture
,
Biomedical and Life Sciences
,
Biomedicine
2020
Background
To achieve malaria elimination, it is important to determine the role of human mobility in parasite transmission maintenance. The Alto Juruá basin (Brazil) exhibits one of the largest vivax and falciparum malaria prevalence in the Amazon. The goal of this study was to estimate the contribution of human commutes to malaria persistence in this region, using data from an origin-destination survey.
Methods
Data from an origin-destination survey were used to describe the intensity and motivation for commutations between rural and urban areas in two Alto Juruá basin (Brazil) municipalities, Mâncio Lima and Rodrigues Alves. The relative time-person spent in each locality per household was estimated. A logistic model was developed to estimate the effect of commuting on the probability of contracting malaria for a certain residence zone inhabitant commuting to another zone.
Results
The main results suggest that the assessed population is not very mobile. A total of
96
%
households reported spending over
90
%
of their annual person-hour in areas within the same residence zone. Study and work were the most prevalent commuting motivations, calculated at
40.5
%
and
29.5
%
respectively. Spending person-hours in urban Rodrigues Alves conferred relative protection to urban Mâncio Lima residents. The opposite effect was observed for those spending time in rural areas of both municipalities.
Conclusion
Residence area is a stronger determinant for contracting malaria than commuting zones in the Alto Juruá region. As these municipalities are a hotspot for
Plasmodium
transmission, understanding the main local human fluxes is essential for planning control strategies, since the probability of contracting malaria is dependent on the transmission intensity of both the origin and the displacement area. The natural conditions for the circulation of certain pathogens, such as
Plasmodium
spp., combined with the Amazon human mobility pattern indicate the need for disease control perspective changes. Therefore, intersectoral public policies should become the basis for health mitigation actions.
Journal Article
Unveiling Time in Dose-Response Models to Infer Host Susceptibility to Pathogens
by
Pessoa, Delphine
,
Codeço, Cláudia T.
,
Ceña, Bruno
in
Animals
,
Biology and Life Sciences
,
Datasets
2014
The biological effects of interventions to control infectious diseases typically depend on the intensity of pathogen challenge. As much as the levels of natural pathogen circulation vary over time and geographical location, the development of invariant efficacy measures is of major importance, even if only indirectly inferrable. Here a method is introduced to assess host susceptibility to pathogens, and applied to a detailed dataset generated by challenging groups of insect hosts (Drosophila melanogaster) with a range of pathogen (Drosophila C Virus) doses and recording survival over time. The experiment was replicated for flies carrying the Wolbachia symbiont, which is known to reduce host susceptibility to viral infections. The entire dataset is fitted by a novel quantitative framework that significantly extends classical methods for microbial risk assessment and provides accurate distributions of symbiont-induced protection. More generally, our data-driven modeling procedure provides novel insights for study design and analyses to assess interventions.
Journal Article
Large-scale epidemiological modelling: scanning for mosquito-borne diseases spatio-temporal patterns in Brazil
by
Lana, Raquel M.
,
Bastos, Leonardo S.
,
Valente, Fernanda
in
Aquatic insects
,
Chikungunya virus
,
Climate
2025
The influence of climate on mosquito-borne diseases like dengue and chikungunya is well established, but comprehensively tracking long-term spatial and temporal trends across large areas has been hindered by fragmented data and limited analysis tools. This study presents an unprecedented analysis, in terms of breadth, estimating the susceptible-infectious-recovered transmission parameters from incidence data in all 5570 municipalities in Brazil over 14 years (2010–2023) for both dengue and chikungunya. We describe the Episcanner computational pipeline, developed to estimate these parameters, producing a reusable dataset characterizing all dengue and chikungunya epidemics that have taken place in this period in Brazil. The analysis reveals new insights into the climate-epidemic nexus: we identify distinct geographical and temporal patterns of arbovirus disease incidence across Brazil, highlighting how climatic factors like temperature and precipitation influence the timing and intensity of dengue and chikungunya epidemics. The innovative Episcanner tool empowers researchers and public health officials to explore these patterns in detail, facilitating targeted interventions and risk assessments. This research offers the possibility of exploring the main characteristics of dengue and chikungunya epidemics and their geographical specificities linked to the effects of global temperature fluctuations such as those captured by the El Niño-Southern Oscillation index.
Journal Article
Modeling the Non-Stationary Climate Dependent Temporal Dynamics of Aedes aegypti
by
Simões, Taynãna C.
,
Eiras, Álvaro E.
,
Codeço, Cláudia T.
in
Abundance
,
Aedes
,
Aedes - physiology
2013
Temperature and humidity strongly affect the physiology, longevity, fecundity and dispersal behavior of Aedes aegypti, vector of dengue fever. Contrastingly, the statistical associations measured between time series of mosquito abundance and meteorological variables are often weak and contradictory. Here, we investigated the significance of these relationships at different time scales.
A time series of the adult mosquito abundance from a medium-sized city in Brazil, lasting 109 weeks was analyzed. Meteorological variables included temperature, precipitation, wind velocity and humidity. As analytical tools, generalized linear models (GLM) with time lags and interaction terms were used to identify average effects while the wavelet analysis was complementarily used to identify transient associations. The fitted GLM showed that mosquito abundance is significantly affected by the interaction between lagged temperature and humidity, and also by the mosquito abundance a week earlier. Extreme meteorological variables were the best predictors, and the mosquito population tended to increase at values above [Formula: see text] and 54% humidity. The wavelet analysis identified non-stationary local effects of these meteorological variables on abundance throughout the study period, with peaks in the spring-summer period. The wavelet detected weak but significant effects for precipitation and wind velocity.
Our results support the presence of transient relationships between meteorological variables and mosquito abundance. Such transient association may be explained by the ability of Ae. aegypti to buffer part of its response to climate, for example, by choosing sites with proper microclimate. We also observed enough coupling between the abundance and meteorological variables to develop a model with good predictive power. Extreme values of meteorological variables with time lags, interaction terms and previous mosquito abundance are strong predictors and should be considered when understanding the climate effect on mosquito abundance and population growth.
Journal Article
Better to Be in Bad Company than to Be Alone? Aedes Vectors Respond Differently to Breeding Site Quality in the Presence of Others
by
Honório, Nildimar A.
,
Pereira, Renato N.
,
Riback, Thais I. S.
in
Adults
,
Aedes
,
Aedes - classification
2015
This study focuses on two competing species, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), both invasive mosquitoes of the New World. Context-specific competition between immature forms inside containers seems to be an important determinant of the coexistence or displacement of each species in different regions of the world. Here, competition experiments developed at low density (one, two or three larvae) and receiving four different resource food concentration, were designed to test whether Ae. albopictus and Ae. aegypti respond differently to competition, and whether competition can be attributed to a simple division of resources. Three phenotypic traits - larval development, adult survival under starvation and wing length - were used as indicators of performance. Larvae of neither species were limited by resource concentration when they were alone, unlike when they developed with competitors. The presence of conspecifics affected Ae. aegypti and Ae. albopictus, inducing slower development, reduced survival and wing length. The response to resource limitation was different when developing with heterospecifics: Ae. aegypti developing with one heterospecific showed faster development, producing smaller adults with shorter lives, while in the presence of two competitors, development increased and adults lived longer. Aedes albopictus demonstrated a better performance when developing with heterospecifics, with no loss in their development period and improved adult survival. Overall, our results suggest that response to competition can not simply be attributed to the division of resources, and that larvae of both species presented large phenotypic plasticity in their response to the presence or absence of heterospecifics and conspecifics.
Journal Article
Correction to: Socioeconomic and demographic characterization of an endemic malaria region in Brazil by multiple correspondence analysis
by
Lana, Raquel M.
,
Honório, Nildimar A.
,
Riback, Thais I. S.
in
Biomedical and Life Sciences
,
Biomedicine
,
Correction
2017
After publication of the article [1], it has been brought to our attention that the y-axis of Fig. 6 has been labeled incorrectly. It should read \"linear predictor\". This has now been corrected in the original article.
Journal Article
Assessing the spread of COVID-19 in Brazil: Mobility, morbidity and social vulnerability
by
Lana, Raquel M.
,
Gomes, Marcelo F. C.
,
Bastos, Leonardo S.
in
Air travel
,
Betacoronavirus
,
Biology and Life Sciences
2020
Brazil detected community transmission of COVID-19 on March 13, 2020. In this study we identified which areas in the country were the most vulnerable for COVID-19, both in terms of the risk of arrival of cases, the risk of sustained transmission and their social vulnerability. Probabilistic models were used to calculate the probability of COVID-19 spread from São Paulo and Rio de Janeiro, the initial hotspots, using mobility data from the pre-epidemic period, while multivariate cluster analysis of socio-economic indices was done to identify areas with similar social vulnerability. The results consist of a series of maps of effective distance, outbreak probability, hospital capacity and social vulnerability. They show areas in the North and Northeast with high risk of COVID-19 outbreak that are also highly socially vulnerable. Later, these areas would be found the most severely affected. The maps produced were sent to health authorities to aid in their efforts to prioritize actions such as resource allocation to mitigate the effects of the pandemic. In the discussion, we address how predictions compared to the observed dynamics of the disease.
Journal Article