Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
165
result(s) for
"Clavé, E."
Sort by:
The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
by
Morizet, Y.
,
D’Anna, W.
,
Daydou, Y.
in
Acoustics
,
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
2021
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
Journal Article
Radiation-induced alteration of apatite on the surface of Mars: first in situ observations with SuperCam Raman onboard Perseverance
2024
Planetary exploration relies considerably on mineral characterization to advance our understanding of the solar system, the planets and their evolution. Thus, we must understand past and present processes that can alter materials exposed on the surface, affecting space mission data. Here, we analyze the first dataset monitoring the evolution of a known mineral target in situ on the Martian surface, brought there as a SuperCam calibration target onboard the Perseverance rover. We used Raman spectroscopy to monitor the crystalline state of a synthetic apatite sample over the first 950 Martian days (sols) of the Mars2020 mission. We note significant variations in the Raman spectra acquired on this target, specifically a decrease in the relative contribution of the Raman signal to the total signal. These observations are consistent with the results of a UV-irradiation test performed in the laboratory under conditions mimicking ambient Martian conditions. We conclude that the observed evolution reflects an alteration of the material, specifically the creation of electronic defects, due to its exposure to the Martian environment and, in particular, UV irradiation. This ongoing process of alteration of the Martian surface needs to be taken into account for mineralogical space mission data analysis.
Journal Article
Astrobiological Potential of Rocks Acquired by the Perseverance Rover at a Sedimentary Fan Front in Jezero Crater, Mars
2024
The Perseverance rover has collected seven oriented samples of sedimentary rocks, all likely older than the oldest signs of widespread life on Earth, at the exposed base of the western fan in Jezero crater, Mars. The samples include a sulfate‐ and clay‐bearing mudstone and sandstone, a fluvial sandstone from a stratigraphically low position at the fan front, and a carbonate‐bearing sandstone deposited above the sulfate‐bearing strata. All samples contain aqueously precipitated materials and most or all were aqueously deposited. Although the rover instruments have not confidently detected organic matter in the rocks from the fan front, the much more sensitive terrestrial instruments will still be able to search for remnants of prebiotic chemistries and past life, and study Mars's past habitability in the samples returned to Earth. The hydrated, sulfate‐bearing mudstone has the highest potential to preserve organic matter and biosignatures, whereas the carbonate‐bearing sandstones can be used to constrain when and for how long Jezero crater contained liquid water. Returned sample science analyses of sulfate, carbonate, clay, phosphate and igneous minerals as well as trace metals and volatiles that are present in the samples acquired at the fan front would provide transformative insights into past habitable environments on Mars, the evolution of its magnetic field, atmosphere and climate and the past and present cycling of atmospheric and crustal water, sulfur and carbon. Plain Language Summary The Perseverance rover collected seven oriented samples of bedrock at the front of the apron‐like sediment deposit in the western side of Jezero crater, Mars. Grains and cements in these sedimentary rocks were likely deposited by water or formed in the presence of water in a range of past environments that predate the first signs of life on Earth. This study describes the geologic context and chemical composition of these samples and discusses how, upon return to Earth, they can be used to search for potential signs of past life, understand when and for how long Mars was habitable and why its climate changed. Studies of the returned samples would seek to detect and analyze organic compounds that may be present below the detection limit of the rover instruments, particularly in the finest‐grained rocks, and look for the traces of prebiotic processes or past life in all collected samples of sedimentary rocks. Additional analyses can also constrain tell us when, why and for how long the rivers and lakes existed in Jezero crater. The presence of diverse materials in rocks that were deposited by or into water can transform current views of Mars science and habitability outside of Earth. Key Points The Perseverance rover has collected seven cores of aqueously deposited sandstones and siltstones at the front of Jezero's western fan Hydrated sulfate, clay and carbonate minerals in the cores record the history of Mars's volatiles and surface habitability The same minerals may preserve organic and inorganic signals of abiotic, prebiotic and biological processes
Journal Article
Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott–Aldrich syndrome
2022
Patients with Wiskott–Aldrich syndrome (WAS) lacking a human leukocyte antigen-matched donor may benefit from gene therapy through the provision of gene-corrected, autologous hematopoietic stem/progenitor cells. Here, we present comprehensive, long-term follow-up results (median follow-up, 7.6 years) (phase I/II trial no.
NCT02333760
) for eight patients with WAS having undergone phase I/II lentiviral vector-based gene therapy trials (nos.
NCT01347346
and
NCT01347242
), with a focus on thrombocytopenia and autoimmunity. Primary outcomes of the long-term study were to establish clinical and biological safety, efficacy and tolerability by evaluating the incidence and type of serious adverse events and clinical status and biological parameters including lentiviral genomic integration sites in different cell subpopulations from 3 years to 15 years after gene therapy. Secondary outcomes included monitoring the need for additional treatment and T cell repertoire diversity. An interim analysis shows that the study meets the primary outcome criteria tested given that the gene-corrected cells engrafted stably, and no serious treatment-associated adverse events occurred. Overall, severe infections and eczema resolved. Autoimmune disorders and bleeding episodes were significantly less frequent, despite only partial correction of the platelet compartment. The results suggest that lentiviral gene therapy provides sustained clinical benefits for patients with WAS.
Long-term monitoring of patients with Wiskott–Aldrich syndrome following lentiviral gene therapy shows a safe profile and a reduction in the frequency of autoimmune manifestations and bleeding events, despite incomplete platelet reconstitution.
Journal Article
Developing Tailored Data Combination Strategies to Optimize the SuperCam Classification of Carbonate Phases on Mars
by
Clavé, E.
,
Lopez‐Reyes, G.
,
Huidobro, J.
in
Classification
,
Data collection
,
data combination
2023
The SuperCam instrument onboard the Mars 2020 Perseverance rover investigates Martian geological targets by a combination of multiple spectroscopic techniques. As Raman, Visible‐Infrared Spectroscopy, and Laser‐Induced Breakdown Spectroscopy (LIBS) spectra deliver complementary information about the interrogated sample, the multivariate analysis of combined spectroscopic data sets is here proposed as a tool to optimize the SuperCam capability to discriminate mineral phases on Mars. For this purpose, the laboratory study of carbonate phases within the Ca‐Mg‐Fe ternary system were selected as representative case of study. After the characterization of model samples, the discrimination capability of mono analytical Raman, VISIR, and LIBS data sets was evaluated by applying a chemometric approach based on the combination of principal component analysis (for sample clustering) and Linear Discriminant Analysis (for mineral classification). Afterward, the low‐level combination (LL) of Raman, VISIR, and LIBS data was achieved by concatenating their spectra into a single data matrix. The mineral classification achieved by LL data sets outperformed the mono analytical ones, thus proving the complementarity between molecular and elemental spectroscopic techniques. Mineral classification was further improved by using a mid‐level data combination strategy. After evaluating benefits and limitations afforded by the proposed combination strategies, future developments are finally outlined. As such, the final objective of this research line is to develop a classification model based on data combination to optimize the capability of SuperCam in discriminating relevant minerals on Mars, this being a key requirement for the selection of the optimal targets to be cached for the future Mars Sample Return Mission. Plain Language Summary The SuperCam instrument onboard the Perseverance rover is capable of analyzing Martian rocks and soils by a combination of Laser‐Induced Breakdown Spectroscopy (LIBS), Raman and Visible‐Infrared Spectroscopy (VISIR). Learning from terrestrial applications, the complementary information provided by the three spectroscopic techniques can be correlated to obtain a more accurate interpretation of the analyzed target. This approach could be particularly useful to discriminate carbonates, which are interesting minerals where to look for traces of past life. Having this in mind, several carbonate samples have been analyzed with laboratory Raman, LIBS, and VISIR instrument. After evaluating the advantages and limitations of each technique, their data were merged by using low‐level and mid‐level strategies that were successfully used previous works. This work proved that, when spectra are combined, the discrimination of carbonate phases is more accurate than when each technique is interpreted separately. This suggests the scientific results obtained by SuperCam on Mars could benefit from the development of tailored classification models based on data combination. Key Points Data combination of Raman, Visible‐Infrared Spectroscopy, and Laser‐Induced Breakdown Spectroscopy spectra collected by SuperCam is proposed Low‐ and mid‐level data combination strategies based on principal component analysis (discrimination) + PC‐Linear Discriminant Analysis (classification are evaluated and compared) The low‐level combination method outperformed the mono analytical discrimination. The mid‐level one further improved the results
Journal Article
In situ recording of Mars soundscape
2022
Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat
1
, (2) the speed of sound varies at the surface with frequency
2
,
3
and (3) high-frequency waves are strongly attenuated with distance in CO
2
(refs.
2
–
4
). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s
−1
apart below and above 240 Hz, a unique characteristic of low-pressure CO
2
-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO
2
vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.
Using data gathered from the microphones of the Perseverance rover, the first characterization of the acoustic environment on Mars is presented, showing two distinct values for the speed of sound in CO
2
-dominated atmosphere.
Journal Article
Author Correction: Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott–Aldrich syndrome
2022
Patients with Wiskott–Aldrich syndrome (WAS) lacking a human leukocyte antigen-matched donor may benefit from gene therapy through the provision of gene-corrected, autologous hematopoietic stem/progenitor cells. Here, we present comprehensive, long-term follow-up results (median follow-up, 7.6 years) (phase I/II trial no. NCT02333760) for eight patients with WAS having undergone phase I/II lentiviral vector-based gene therapy trials (nos. NCT01347346 and NCT01347242), with a focus on thrombocytopenia and autoimmunity. Primary outcomes of the long-term study were to establish clinical and biological safety, efficacy and tolerability by evaluating the incidence and type of serious adverse events and clinical status and biological parameters including lentiviral genomic integration sites in different cell subpopulations from 3 years to 15 years after gene therapy. Secondary outcomes included monitoring the need for additional treatment and T cell repertoire diversity. An interim analysis shows that the study meets the primary outcome criteria tested given that the gene-corrected cells engrafted stably, and no serious treatment-associated adverse events occurred. Overall, severe infections and eczema resolved. Autoimmune disorders and bleeding episodes were significantly less frequent, despite only partial correction of the platelet compartment. The results suggest that lentiviral gene therapy provides sustained clinical benefits for patients with WAS.
Journal Article
Intense alteration on early Mars revealed by high-aluminum rocks at Jezero crater
2024
The NASA
Perseverance
rover discovered light-toned float rocks scattered across the surface of Jezero crater that are particularly rich in alumina ( ~ 35 wt% Al
2
O
3
) and depleted in other major elements (except silica). These unique float rocks have heterogeneous mineralogy ranging from kaolinite/halloysite-bearing in hydrated samples, to spinel-bearing in dehydrated samples also containing a dehydrated Al-rich phase. Here we describe SuperCam and Mastcam-Z observations of the float rocks, including the first in situ identification of kaolinite or halloysite on another planet, and dehydrated phases including spinel and apparent partially dehydroxylated kaolinite. The presence of spinel in these samples is likely detrital in origin, surviving kaolinitization, pointing to an ultramafic origin. However, the association of low hydration with increased Al
2
O
3
abundances suggests heating-induced dehydration which could have occurred during the lithification or impact excavation of these rocks. Given the orbital context of kaolinite-bearing megabreccia in the Jezero crater rim, we propose an origin for these rocks involving intense aqueous alteration of the parent material, followed by dehydration/lithification potentially through impact processes, and dispersion into Jezero crater through flood or impact-related processes.
Aqueous alteration followed by dehydration and dispersion into Jezero crater is indicated by the identification of kaolinite or halloysite, spinel and a dehydrated Al-rich phase in spectroscopic observations of light-toned float rocks by the Perseverance rover
Journal Article
Oligoclonal expansions of mucosal T cells in Crohn's disease predominate in NKG2D-expressing CD4 T cells
2014
Crohn's disease (CD) is an inflammatory pathology of the mucosal intestine that results from uncontrolled immune response towards commensal microbes. Clonal expansions of T cells have been found in patients with CD suggesting an antigen-specific stimulation of pathogenic T cells. Here we show, using T-cell receptor repertoire analysis by real-time PCR, that oligoclonal expansions are found in both CD8+ and CD4+ T cells in the blood and intestinal mucosa of CD patients. The majority of CD4+ T-cell-expanded clones are CD4+NKG2D+ T cells. These clonal expansions were found in both inflamed and neighboring healthy tissue and were persisting during the course of the disease. The presence of these CD4+NKG2D+ T-cell clones at the macroscopically normal edge of the surgical resection might be predictive of inflammation relapse post surgery.
Journal Article