Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
139
result(s) for
"Claverie, Jean-Michel"
Sort by:
The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus
by
Claverie, Jean-Michel
,
Legendre, Matthieu
,
Abergel, Chantal
in
Biological evolution
,
Deoxyribonucleic acid
,
DNA viruses
2015
More than a century ago, the term ‘virus’ was introduced to describe infectious agents that are invisible by light microscopy and capable of passing through sterilizing filters. In addition to their extremely small size, most viruses have minimal genomes and gene contents, and rely almost entirely on host cell-encoded functions to multiply. Unexpectedly, four different families of eukaryotic ‘giant viruses’ have been discovered over the past 10 years with genome sizes, gene contents and particle dimensions overlapping with that of cellular microbes. Their ongoing analyses are challenging accepted ideas about the diversity, evolution and origin of DNA viruses.
The discovery of four families of giant viruses and how they impacted the concept of virus.
Journal Article
A Putative Role of de-Mono-ADP-Ribosylation of STAT1 by the SARS-CoV-2 Nsp3 Protein in the Cytokine Storm Syndrome of COVID-19
2020
As more cases of COVID-19 are studied and treated worldwide, it had become apparent that the lethal and most severe cases of pneumonia are due to an out-of-control inflammatory response to the SARS-CoV-2 virus. I explored the putative causes of this specific feature through a detailed genomic comparison with the closest SARS-CoV-2 relatives isolated from bats, as well as previous coronavirus strains responsible for the previous epidemics (SARS-CoV and MERS-CoV). The high variability region of the nsp3 protein was confirmed to exhibit the most variations between closest strains. It was then studied in the context of physiological and molecular data available in the literature. A number of convergent findings suggest de-mono-ADP-ribosylation (de-MARylation) of STAT1 by the SARS-CoV-2 nsp3 as a putative cause of the cytokine storm observed in the most severe cases of COVID-19. This may suggest new therapeutic approaches and help in designing assays to predict the virulence of naturally circulating SARS-like animal coronaviruses.
Journal Article
Past and present giant viruses diversity explored through permafrost metagenomics
2022
Giant viruses are abundant in aquatic environments and ecologically important through the metabolic reprogramming of their hosts. Less is known about giant viruses from soil even though two of them, belonging to two different viral families, were reactivated from 30,000-y-old permafrost samples. This suggests an untapped diversity of
Nucleocytoviricota
in this environment. Through permafrost metagenomics we reveal a unique diversity pattern and a high heterogeneity in the abundance of giant viruses, representing up to 12% of the sum of sequence coverage in one sample.
Pithoviridae
and
Orpheoviridae
-like viruses were the most important contributors. A complete 1.6 Mb
Pithoviridae
-like circular genome was also assembled from a 42,000-y-old sample. The annotation of the permafrost viral sequences revealed a patchwork of predicted functions amidst a larger reservoir of genes of unknown functions. Finally, the phylogenetic reconstructions not only revealed gene transfers between cells and viruses, but also between viruses from different families.
Although giant viruses are abundant in aquatic environments, less is known about giant viruses in soil. Here, the authors use permafrost metagenomics to reveal giant virus diversity and heterogeneity, as well as gene transfers between viruses from different families.
Journal Article
BLAST-EXPLORER helps you building datasets for phylogenetic analysis
by
Blanc, Guillaume
,
Claverie, Jean-Michel
,
Dereeper, Alexis
in
Algorithms
,
Animal Systematics/Taxonomy/Biogeography
,
Biomedical and Life Sciences
2010
Background
The right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task.
Results
To fill this gap, we designed BLAST-Explorer, an original and friendly web-based application that combines a BLAST search with a suite of tools that allows interactive, phylogenetic-oriented exploration of the BLAST results and flexible selection of homologous sequences among the BLAST hits. Once the selection of the BLAST hits is done using BLAST-Explorer, the corresponding sequence can be imported locally for external analysis or passed to the phylogenetic tree reconstruction pipelines available on the Phylogeny.fr platform.
Conclusions
BLAST-Explorer provides a simple, intuitive and interactive graphical representation of the BLAST results and allows selection and retrieving of the BLAST hit sequences based a wide range of criterions. Although BLAST-Explorer primarily aims at helping the construction of sequence datasets for further phylogenetic study, it can also be used as a standard BLAST server with enriched output. BLAST-Explorer is available at
http://www.phylogeny.fr
Journal Article
The DNA methylation landscape of giant viruses
2020
DNA methylation is an important epigenetic mark that contributes to various regulations in all domains of life. Giant viruses are widespread dsDNA viruses with gene contents overlapping the cellular world that also encode DNA methyltransferases. Yet, virtually nothing is known about the methylation of their DNA. Here, we use single-molecule real-time sequencing to study the complete methylome of a large spectrum of giant viruses. We show that DNA methylation is widespread, affecting 2/3 of the tested families, although unevenly distributed. We also identify the corresponding viral methyltransferases and show that they are subject to intricate gene transfers between bacteria, viruses and their eukaryotic host. Most methyltransferases are conserved, functional and under purifying selection, suggesting that they increase the viruses’ fitness. Some virally encoded methyltransferases are also paired with restriction endonucleases forming Restriction-Modification systems. Our data suggest that giant viruses’ methyltransferases are involved in diverse forms of virus-pathogens interactions during coinfections.
DNA methylation is an epigenetic marker in all domains of life. Here, Jeudy
et al
., using single-molecule realtime sequencing, determine DNA methylation patterns in giant viruses and evolutionary analysis of virus encoded DNA methyltransferases suggests that they affect viral fitness.
Journal Article
Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae
by
Legendre, Matthieu
,
Arslan, Defne
,
Claverie, Jean-Michel
in
Acanthamoeba
,
Acanthamoeba - virology
,
Amino Acid Sequence
2011
Mimivirus, a DNA virus infecting acanthamoeba, was for a long time the largest known virus both in terms of particle size and gene content. Its genome encodes 979 proteins, including the first four aminoacyl tRNA synthetases (ArgRS, CysRS, MetRS, and TyrRS) ever found outside of cellular organisms. The discovery that Mimivirus encoded trademark cellular functions prompted a wealth of theoretical studies revisiting the concept of virus and associated large DNA viruses with the emergence of early eukaryotes. However, the evolutionary significance of these unique features remained impossible to assess in absence of a Mimivirus relative exhibiting a suitable evolutionary divergence. Here, we present Megavirus chilensis, a giant virus isolated off the coast of Chile, but capable of replicating in fresh water acanthamoeba. Its 1,259,197-bp genome is the largest viral genome fully sequenced so far. It encodes 1,120 putative proteins, of which 258 (23%) have no Mimivirus homologs. The 594 Megavirus/Mimivirus orthologs share an average of 50% of identical residues. Despite this divergence, Megavirus retained all of the genomic features characteristic of Mimivirus, including its cellular-like genes. Moreover, Megavirus exhibits three additional aminoacyl-tRNA synthetase genes (IleRS, TrpRS, and AsnRS) adding strong support to the previous suggestion that the Mimivirus/Megavirus lineage evolved from an ancestral cellular genome by reductive evolution. The main differences in gene content between Mimivirus and Megavirus genomes are due to (i) lineages specific gains or losses of genes, (ii) lineage specific gene family expansion or deletion, and (iii) the insertion/migration of mobile elements (intron, intein).
Journal Article
Mimiviridae: An Expanding Family of Highly Diverse Large dsDNA Viruses Infecting a Wide Phylogenetic Range of Aquatic Eukaryotes
2018
Since 1998, when Jim van Etten’s team initiated its characterization, Paramecium bursaria Chlorella virus 1 (PBCV-1) had been the largest known DNA virus, both in terms of particle size and genome complexity. In 2003, the Acanthamoeba-infecting Mimivirus unexpectedly superseded PBCV-1, opening the era of giant viruses, i.e., with virions large enough to be visible by light microscopy and genomes encoding more proteins than many bacteria. During the following 15 years, the isolation of many Mimivirus relatives has made Mimiviridae one of the largest and most diverse families of eukaryotic viruses, most of which have been isolated from aquatic environments. Metagenomic studies of various ecosystems (including soils) suggest that many more remain to be isolated. As Mimiviridae members are found to infect an increasing range of phytoplankton species, their taxonomic position compared to the traditional Phycodnaviridae (i.e., etymologically “algal viruses”) became a source of confusion in the literature. Following a quick historical review of the key discoveries that established the Mimiviridae family, we describe its current taxonomic structure and propose a set of operational criteria to help in the classification of future isolates.
Journal Article
Fundamental Difficulties Prevent the Reconstruction of the Deep Phylogeny of Viruses
2020
The extension of virology beyond its traditional medical, veterinary, or agricultural applications, now called environmental virology, has shown that viruses are both the most numerous and diverse biological entities on Earth. In particular, virus isolations from unicellular eukaryotic hosts (heterotrophic and photosynthetic protozoans) revealed numerous viral types previously unexpected in terms of virion structure, gene content, or mode of replication. Complemented by large-scale metagenomic analyses, these discoveries have rekindled interest in the enigma of the origin of viruses, for which a description encompassing all their diversity remains not available. Several laboratories have repeatedly tackled the deep reconstruction of the evolutionary history of viruses, using various methods of molecular phylogeny applied to the few shared “core” genes detected in certain virus groups (e.g., the Nucleocytoviricota). Beyond the practical difficulties of establishing reliable homology relationships from extremely divergent sequences, I present here conceptual arguments highlighting several fundamental limitations plaguing the reconstruction of the deep evolutionary history of viruses, and even more the identification of their unique or multiple origin(s). These arguments also underline the risk of establishing premature high level viral taxonomic classifications. Those limitations are direct consequences of the random mechanisms governing the reductive/retrogressive evolution of all obligate intracellular parasites.
Journal Article
The human gene damage index as a gene-level approach to prioritizing exome variants
2015
The protein-coding exome of a patient with a monogenic disease contains about 20,000 variants, only one or two of which are disease causing. We found that 58% of rare variants in the protein-coding exome of the general population are located in only 2% of the genes. Prompted by this observation, we aimed to develop a gene-level approach for predicting whether a given human protein-coding gene is likely to harbor disease-causing mutations. To this end, we derived the gene damage index (GDI): a genome-wide, gene-level metric of the mutational damage that has accumulated in the general population. We found that the GDI was correlated with selective evolutionary pressure, protein complexity, coding sequence length, and the number of paralogs. We compared GDI with the leading gene-level approaches, genic intolerance, and de novo excess, and demonstrated that GDI performed best for the detection of false positives (i.e., removing exome variants in genes irrelevant to disease), whereas genic intolerance and de novo excess performed better for the detection of true positives (i.e., assessing de novo mutations in genes likely to be disease causing). The GDI server, data, and software are freely available to noncommercial users from lab.rockefeller.edu/casanova/GDI.
Journal Article
Noumeavirus replication relies on a transient remote control of the host nucleus
2017
Acanthamoeba are infected by a remarkable diversity of large dsDNA viruses, the infectious cycles of which have been characterized using genomics, transcriptomics and electron microscopy. Given their gene content and the persistence of the host nucleus throughout their infectious cycle, the Marseilleviridae were initially assumed to fully replicate in the cytoplasm. Unexpectedly, we find that their virions do not incorporate the virus-encoded transcription machinery, making their replication nucleus-dependent. However, instead of delivering their DNA to the nucleus, the Marseilleviridae initiate their replication by transiently recruiting the nuclear transcription machinery to their cytoplasmic viral factory. The nucleus recovers its integrity after becoming leaky at an early stage. This work highlights the importance of virion proteomic analyses to complement genome sequencing in the elucidation of the replication scheme and evolution of large dsDNA viruses.
Large dsDNA viruses either replicate in or disrupt the nucleus to gain access to host RNA polymerases, or they rely on virus-encoded, packaged RNA polymerases. Here, the authors show that Noumeavirus replicates in the cytoplasm and relies on a transient recruitment of nuclear proteins to initiate replication.
Journal Article