Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
133
result(s) for
"Clemente, Francesca"
Sort by:
GCase Enhancers: A Potential Therapeutic Option for Gaucher Disease and Other Neurological Disorders
by
Cardona, Francesca
,
Martínez-Bailén, Macarena
,
Matassini, Camilla
in
allosteric chaperones
,
Clinical trials
,
Endoplasmic reticulum
2022
Pharmaceutical chaperones (PCs) are small compounds able to bind and stabilize misfolded proteins, allowing them to recover their native folding and thus their biological activity. In particular, lysosomal storage disorders (LSDs), a class of metabolic disorders due to genetic mutations that result in misfolded lysosomal enzymes, can strongly benefit from the use of PCs able to facilitate their translocation to the lysosomes. This results in a recovery of their catalytic activity. No PC for the GCase enzyme (lysosomal acid-β-glucosidase, or glucocerebrosidase) has reached the market yet, despite the importance of this enzyme not only for Gaucher disease, the most common LSD, but also for neurological disorders, such as Parkinson’s disease. This review aims to describe the efforts made by the scientific community in the last 7 years (since 2015) in order to identify new PCs for the GCase enzyme, which have been mainly identified among glycomimetic-based compounds.
Journal Article
Identification of GM1-Ganglioside Secondary Accumulation in Fibroblasts from Neuropathic Gaucher Patients and Effect of a Trivalent Trihydroxypiperidine Iminosugar Compound on Its Storage Reduction
by
Coviello, Domenico
,
Calamai, Martino
,
Clemente, Francesca
in
beta-Galactosidase - genetics
,
Coloring Agents
,
Enzymes
2024
Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the β-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on β-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.
Journal Article
Exploring Multivalent Architectures for Binding and Stabilization of N-Acetylgalactosamine 6-Sulfatase
by
Davighi, Maria Giulia
,
Goti, Andrea
,
Clemente, Francesca
in
Carbohydrates
,
Chondroitinsulfatases - chemistry
,
Chondroitinsulfatases - metabolism
2025
Morquio A syndrome is a lysosomal disorder caused by the deficiency of the lysosomal enzyme N-acetylgalactosamine 6-sulfatase (GALNS, EC 3.1.6.4). Currently, enzyme replacement therapy (ERT) is used to treat Morquio A through the infusion of the recombinant enzyme VIMIZIM® (elosulfase alfa, BioMarin). Unfortunately, the recombinant enzyme exhibits low conformational stability in vivo. A promising approach to address this issue is the coadministration of recombinant human GALNS (rhGALNS) with a pharmacological chaperone (PC), a molecule that selectively binds to the misfolded protein, stabilizes its conformation, and assists in the restoration of the impaired function. We report in this work the synthesis of a library of multivalent glycomimetics exploiting the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between several dendrimeric scaffolds armed with terminal alkynes and azido ending iminosugars of different structures (pyrrolidines, piperidines, and pyrrolizidines) or simple azido ending carbohydrates as bioactive units. The biological evaluation identified pyrrolidine-based nonavalent dendrimers 1 and 36 as the most promising compounds, able both to bind the native enzyme with IC50 in the micromolar range and to act as enzyme stabilizers toward rhGALNS in a thermal denaturation study, thus identifying promising compounds for a combined PC/ERT therapy.
Journal Article
Synthesis of a New β-Galactosidase Inhibitor Displaying Pharmacological Chaperone Properties for GM1 Gangliosidosis
by
Paoli, Paolo
,
Goti, Andrea
,
Clemente, Francesca
in
Child development
,
Chromatography
,
Enzymes
2022
GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme β-galactosidase (β-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal β-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new pharmacological chaperones for GM1 gangliosidosis, the synthesis of five new trihydroxypiperidine iminosugars is reported in this work. The target compounds feature a pentyl alkyl chain in different positions of the piperidine ring and different absolute configurations of the alkyl chain at C-2 and the hydroxy group at C-3. The organometallic addition of a Grignard reagent onto a carbohydrate-derived nitrone in the presence or absence of a suitable Lewis Acid was exploited, providing structural diversity at C-2, followed by the ring-closure reductive amination step. An oxidation-reduction process allowed access to a different configuration at C-3. The N-pentyl trihydroxypiperidine iminosugar was also synthesized for the purpose of comparison. The biological evaluation of the newly synthesized compounds was performed on leucocyte extracts from healthy donors and identified two suitable β-Gal inhibitors, namely compounds 10 and 12. Among these, compound 12 showed chaperoning properties since it enhanced β-Gal activity by 40% when tested on GM1 patients bearing the p.Ile51Asn/p.Arg201His mutations.
Journal Article
Intracerebral Injection of Extracellular Vesicles from Mesenchymal Stem Cells Exerts Reduced Aβ Plaque Burden in Early Stages of a Preclinical Model of Alzheimer’s Disease
by
Swuec, Paolo
,
Desiato, Genni
,
Clemente, Francesca
in
Alzheimer's disease
,
APPswe/PS1dE9 AD mice
,
Axons
2019
Bone marrow Mesenchymal Stem Cells (BM-MSCs), due to their strong protective and anti-inflammatory abilities, have been widely investigated in the context of several diseases for their possible therapeutic role, based on the release of a highly proactive secretome composed of soluble factors and Extracellular Vesicles (EVs). BM-MSC-EVs, in particular, convey many of the beneficial features of parental cells, including direct and indirect β-amyloid degrading-activities, immunoregulatory and neurotrophic abilities. Therefore, EVs represent an extremely attractive tool for therapeutic purposes in neurodegenerative diseases, including Alzheimer’s disease (AD). We examined the therapeutic potential of BM-MSC-EVs injected intracerebrally into the neocortex of APPswe/PS1dE9 AD mice at 3 and 5 months of age, a time window in which the cognitive behavioral phenotype is not yet detectable or has just started to appear. We demonstrate that BM-MSC-EVs are effective at reducing the Aβ plaque burden and the amount of dystrophic neurites in both the cortex and hippocampus. The presence of Neprilysin on BM-MSC-EVs, opens the possibility of a direct β-amyloid degrading action. Our results indicate a potential role for BM-MSC-EVs already in the early stages of AD, suggesting the possibility of intervening before overt clinical manifestations.
Journal Article
Cultural Heritage and Geology: The Example of the Mascheroni Fountain and Its Qanat in the Rupestrian Town of Laterza (MurGEopark UGGp and “Terra delle Gravine” Regional Park, Puglia, Southern Italy)
by
Sabato, Luisa
,
Bellini, Filippo
,
Tropeano, Marcello
in
Aquatic resources
,
Aqueducts
,
Aquifers
2025
Water resources allow us to trace the history of many of our towns. In settings with limited surface water, a very interesting case study is represented by the presence/preservation of water in the rupestrian towns located along the rocky walls of canyons (locally named “gravine”) southward, cutting the Murge karst area (Puglia, Southern Italy). In some sections of their valleys, soft rocks, easy to dig, are exposed, and, along the canyon flanks, favored the development of rupestrian towns (cities where dwellings are carved in these soft rocks). Here, before the construction of aqueducts that now bring water from the “distant” Apennines (at least 30 km away), the building of historical fountains, in addition to the collection of rainwater in cisterns, testifies to the presence of an aquifer now undervalued as a local water resource useful for human settlements in a predominantly karst territory. Our study regards an aquifer feeding the Mascheroni Fountain (Great Masks Fountain) through a short qanat that allowed for the development of the old town of Laterza, in Puglia (Southern Italy). Starting from the attractiveness of the ancient fountain, the connection between geological features of the area and the ancestral origin of the city could be proposed to a large audience, representing an intriguing opportunity to develop themes useful for geotouristic purposes and disseminating concepts about sustainability and the importance of preserving local renewable resources. This topic is of paramount importance since the town of Laterza is located at the boundary between the UNESCO MurGEopark and the “Terra delle Gravine” Regional Park, making it the ideal starting point for both parks.
Journal Article
Synthesis of “All-Cis” Trihydroxypiperidines from a Carbohydrate-Derived Ketone: Hints for the Design of New β-Gal and GCase Inhibitors
by
Davighi, Maria Giulia
,
Goti, Andrea
,
Clemente, Francesca
in
Alcohol
,
azasugars
,
beta-Galactosidase - antagonists & inhibitors
2020
Pharmacological chaperones (PCs) are small compounds able to rescue the activity of mutated lysosomal enzymes when used at subinhibitory concentrations. Nitrogen-containing glycomimetics such as aza- or iminosugars are known to behave as PCs for lysosomal storage disorders (LSDs). As part of our research into lysosomal sphingolipidoses inhibitors and looking in particular for new β-galactosidase inhibitors, we report the synthesis of a series of alkylated azasugars with a relative “all-cis” configuration at the hydroxy/amine-substituted stereocenters. The novel compounds were synthesized from a common carbohydrate-derived piperidinone intermediate 8, through reductive amination or alkylation of the derived alcohol. In addition, the reaction of ketone 8 with several lithium acetylides allowed the stereoselective synthesis of new azasugars alkylated at C-3. The activity of the new compounds towards lysosomal β-galactosidase was negligible, showing that the presence of an alkyl chain in this position is detrimental to inhibitory activity. Interestingly, 9, 10, and 12 behave as good inhibitors of lysosomal β-glucosidase (GCase) (IC50 = 12, 6.4, and 60 µM, respectively). When tested on cell lines bearing the Gaucher mutation, they did not impart any enzyme rescue. However, altogether, the data included in this work give interesting hints for the design of novel inhibitors.
Journal Article
Deep Phenotyping of T-Cells Derived From the Aneurysm Wall in a Pediatric Case of Subarachnoid Hemorrhage
2022
Intracranial aneurysms (IAs) are very rare in children, and the characteristics of the T-cells in the IA wall are largely unknown. A comatose 7-years-old child was admitted to our center because of a subarachnoid hemorrhage due to a ruptured giant aneurysm of the right middle cerebral artery. Two days after the aneurysm clipping the patient was fully awake with left hemiparesis. T-cells from the IA wall and from peripheral blood of this patient were analyzed by multi-dimensional flow cytometry. Unbiased analysis, based on the use of FlowSOM clustering and dimensionality reduction technique UMAP, indicated that there was virtually no overlap between circulating and tissue-infiltrating T-cells. Thus, naïve T-cells and canonical memory T-cells were largely restricted to peripheral blood, while CD4 - CD8 - T-cells were strongly enriched in the IA wall. The unique CD4 + , CD8 + and CD4 - CD8 - T-cell clusters from the IA wall expressed high levels of CCR5, Granzyme B and CD69, displaying thus characteristics of cytotoxic and tissue-resident effector cells. Low Ki67 expression indicated that they were nevertheless in a resting state. Among regulatory T-cell subsets, Eomes + Tr1-like cells were strongly enriched in the IA wall. Finally, analysis of cytokine producing capacities unveiled that the IA wall contained poly-functional T-cells, which expressed predominantly IFN-γ, TNF and IL-2. CD4 + T-cells co-expressed also CD40L, and produced some IL-17, GM-CSF and IL-10. This report provides to our knowledge the first detailed characterization of the human T-cell compartment in the IA wall.
Journal Article
Unravelling Plasma Extracellular Vesicle Diversity With Optimised Spectral Flow Cytometry
by
Papa, Laura
,
Maugeri, Norma
,
Del Zotto, Genny
in
antibody
,
extracellular vesicle
,
fluorochrome
2025
Extracellular vesicles (EVs) are crucial for intercellular communication and are found in various biological fluids. The identification and immunophenotyping of such small particles continue to pose significant challenges. Here, we have developed a workflow for the optimisation of a next‐generation panel for in‐depth immunophenotyping of circulating plasma EVs using spectral flow cytometry. Our data collection followed a multistep optimisation phase for both instrument setup and 21‐colour panel design, thus maximising fluorescent signal recovery. This spectral approach enabled the identification of novel EV subpopulations. Indeed, besides common EVs released by erythrocytes, platelets, leukocytes and endothelial cells, we observed rare and poorly known EV subsets carrying antigens related to cell activation or exhaustion. Notably, the unsupervised data analysis of major EV subsets revealed subpopulations expressing up to five surface antigens simultaneously. However, the majority of EVs expressed only a single surface antigen, suggesting they may not fully represent the phenotype of their parent cells. This is likely due to the small surface area or the biogenesis of EVs rather than antibody steric hindrance. Finally, we tested our workflow by analysing the plasma EV landscape in a cohort of systemic lupus erythematosus (SLE) patients. Interestingly, we observed a significant increase in CD54+ EVs, supporting the notion of elevated circulating ICAM under SLE conditions. To our knowledge, these are the first data highlighting the importance of a spectral flow cytometry approach in deciphering the heterogeneity of plasma EVs paving the way for the routine use of a high‐dimensional immunophenotyping in EV research.
Journal Article
Immunomodulatory Effects of Endoscopic Ultrasound-Guided Thermal Ablation in Patients with Pancreatic Ductal Adenocarcinoma
by
Manfredi, Angelo
,
Linzenbold, Walter
,
Protti, Maria Pia
in
Ablation
,
Ablation (Surgery)
,
Adenocarcinoma
2023
Immunological consequences of endoscopic ultrasound (EUS)-local thermal ablation (LTA) for pancreatic ductal adenocarcinoma (PDAC) have not been extensively assessed. We aimed to explore EUS-LTA effects on the systemic immune response in PDAC. Peripheral blood was collected from 10 treatment-naïve patients with borderline resectable and locally advanced PDAC, randomly allocated to Nab-paclitaxel plus Gemcitabine chemotherapy (CT-arm, n = 5) or EUS-LTA with HybridTherm Probe plus CT (HTP + CT-arm, n = 5). Twenty healthy donors were included as controls. Flow-cytometry and multiplex assays were used to profile immune cell subsets and measure serum cytokines/chemokines, respectively. At baseline, PDAC patients showed increased circulating monocytes and lower circulating lymphocytes and CD19+ B cells counts compared to healthy controls. After 4 months, CT induced decrease of B regulatory cells, CD4+ cytotoxic T cells and IL-1β. The addition of EUS-HTP to CT selectively decreased the serum levels of APRIL/TNFSF13 as well as T regulatory cells, total, classic and inflammatory monocytes. Serum levels of APRIL/TNFSF13 and total, classic and inflammatory monocytes counts at baseline were associated with worse overall survival. EUS-HTP has the potential to selectively impact on immune cells and cytokines associated with poor outcomes in PDAC.
Journal Article