Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
47
result(s) for
"Clouston, Andrew D"
Sort by:
A clinicopathological and molecular analysis of 200 traditional serrated adenomas
2015
The traditional serrated adenoma is the least common colorectal serrated polyp. The clinicopathological features and molecular drivers of these polyps require further investigation. We have prospectively collected a cohort of 200 ordinary and advanced traditional serrated adenomas and performed BRAF and KRAS mutational profiling, CpG island methylator phenotype analysis, and immunohistochemistry for a panel of 7 antibodies (MLH1, β-catenin, p53, p16, Ki67, CK7, and CK20) on all cases. The mean age of the patients was 64 years and 50% were female. Of the polyps, 71% were distal. Advanced histology (overt dysplasia or carcinoma) was present in 19% of cases. BRAF mutation was present in 67% and KRAS mutation in 22%. BRAF mutant traditional serrated adenomas were more frequently proximal (39% versus 2%; P≤0.0001), were exclusively associated with a precursor polyp (57% versus 0%; P≤0.0001), and were more frequently CpG island methylator phenotype high (60% versus 16%; P≤0.0001) than KRAS mutant traditional serrated adenomas. Advanced traditional serrated adenomas retained MLH1 expression in 97%, showed strong p53 staining in 55%, and nuclear β-catenin staining in 40%. P16 staining was lost in the advanced areas of 55% of BRAF mutant traditional serrated adenomas compared with 10% of the advanced areas of KRAS mutant or BRAF/KRAS wild-type traditional serrated adenomas. BRAF and KRAS mutant traditional serrated adenomas are morphologically related but biologically disparate polyps with distinctive clinicopathological and molecular features. The overwhelming majority of traditional serrated adenomas retain mismatch repair enzyme function indicating a microsatellite-stable phenotype. Malignant progression occurs via TP53 mutation and Wnt pathway activation regardless of mutation status. However, CDKN2A (encoding the p16 protein) is silenced nearly exclusively in the advanced areas of the BRAF mutant traditional serrated adenomas. Thus, the BRAF mutant traditional serrated adenoma represents an important precursor of the aggressive BRAF mutant, microsatellite-stable subtype of colorectal carcinoma.
Journal Article
Calcineurin inhibition rescues alloantigen-specific central memory T cell subsets that promote chronic GVHD
2024
Calcineurin inhibitors (CNIs) constitute the backbone of modern acute graft-versus-host disease (aGVHD) prophylaxis regimens but have limited efficacy in the prevention and treatment of chronic GVHD (cGVHD). We investigated the effect of CNIs on immune tolerance after stem cell transplantation with discovery-based single-cell gene expression and T cell receptor (TCR) assays of clonal immunity in tandem with traditional protein-based approaches and preclinical modeling. While cyclosporin and tacrolimus suppressed the clonal expansion of CD8+ T cells during GVHD, alloreactive CD4+ T cell clusters were preferentially expanded. Moreover, CNIs mediated reversible dose-dependent suppression of T cell activation and all stages of donor T cell exhaustion. Critically, CNIs promoted the expansion of both polyclonal and TCR-specific alloreactive central memory CD4+ T cells (TCM) with high self-renewal capacity that mediated cGVHD following drug withdrawal. In contrast to posttransplant cyclophosphamide (PT-Cy), CSA was ineffective in eliminating IL-17A-secreting alloreactive T cell clones that play an important role in the pathogenesis of cGVHD. Collectively, we have shown that, although CNIs attenuate aGVHD, they paradoxically rescue alloantigen-specific TCM, especially within the CD4+ compartment in lymphoid and GVHD target tissues, thus predisposing patients to cGVHD. These data provide further evidence to caution against CNI-based immune suppression without concurrent approaches that eliminate alloreactive T cell clones.
Journal Article
Multiplex Serum Protein Analysis Identifies Novel Biomarkers of Advanced Fibrosis in Patients with Chronic Liver Disease with the Potential to Improve Diagnostic Accuracy of Established Biomarkers
2016
Non-invasive markers of liver fibrosis are urgently required, especially for use in non-specialist settings. The aim of this study was to identify novel serum biomarkers of advanced fibrosis.
We performed an unbiased screen of 120 serum analytes including cytokines, chemokines and proteases in 70 patients (35 without fibrosis, 35 with cirrhosis on biopsy), and selected a panel of 44 candidate biomarkers, which were subsequently measured in a mixed-etiology cohort of 432 patients with known serum HA, PIIINP and TIMP1 (which comprise the validated Enhanced Liver Fibrosis (ELF) test). Multivariate logistic regression modelling was used to generate models for the prediction of advanced or significant fibrosis (METAVIR ≥F3 and ≥F2, respectively); in addition to identifying biomarkers of disease activity and steatohepatitis.
Seventeen analytes were significantly differentially expressed between patients with no advanced fibrosis and patients with advanced fibrosis, the most significant being hyaluronic acid (HA) and matrix metalloproteinase (MMP) 7 (p = 2.9E-41 and p = 1.0E-26, respectively). The optimal model for the prediction of advanced fibrosis comprised HA, MMP7, MMP1, alphafetoprotein (AFP) and the AST to platelet ratio index (APRI). We demonstrate enhanced diagnostic accuracy (AUROC = 0.938) compared to a model comprising HA, PIIINP and TIMP1 alone (ELF) (AUROC = 0.898, p<0.0001, De Long's test).
We have identified novel serum biomarkers of advanced liver fibrosis, which have the potential to enhance the diagnostic accuracy of established biomarkers. Our data suggest MMP7 is a valuable indicator of advanced fibrosis and may play a role in liver fibrogenesis.
Journal Article
Therapeutic potential of macrophage colony-stimulating factor in chronic liver disease
by
Genz, Berit
,
Cestari, Michelle F.
,
Miller, Gregory
in
Alcohol
,
Animals
,
chronic liver disease
2022
Resident and recruited macrophages control the development and proliferation of the liver. We have previously shown in multiple species that treatment with a macrophage colony stimulating factor (CSF1)-Fc fusion protein initiated hepatocyte proliferation and promoted repair in models of acute hepatic injury in mice. Here, we investigated the impact of CSF1-Fc on resolution of advanced fibrosis and liver regeneration, using a non-resolving toxin-induced model of chronic liver injury and fibrosis in C57BL/6J mice. Co-administration of CSF1-Fc with exposure to thioacetamide (TAA) exacerbated inflammation consistent with monocyte contributions to initiation of pathology. After removal of TAA, either acute or chronic CSF1-Fc treatment promoted liver growth, prevented progression and promoted resolution of fibrosis. Acute CSF1-Fc treatment was also anti-fibrotic and pro-regenerative in a model of partial hepatectomy in mice with established fibrosis. The beneficial impacts of CSF1-Fc treatment were associated with monocyte-macrophage recruitment and increased expression of remodelling enzymes and growth factors. These studies indicate that CSF1-dependent macrophages contribute to both initiation and resolution of fibrotic injury and that CSF1-Fc has therapeutic potential in human liver disease.
Journal Article
CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan
2019
Heterogeneous subtypes of cancer-associated fibroblasts (CAFs) coexist within pancreatic cancer tissues and can both promote and restrain disease progression. Here, we interrogate how cancer cells harboring distinct alterations in p53 manipulate CAFs. We reveal the existence of a p53-driven hierarchy, where cancer cells with a gain-of-function (GOF) mutant p53 educate a dominant population of CAFs that establish a pro-metastatic environment for GOF and null p53 cancer cells alike. We also demonstrate that CAFs educated by null p53 cancer cells may be reprogrammed by either GOF mutant p53 cells or their CAFs. We identify perlecan as a key component of this pro-metastatic environment. Using intravital imaging, we observe that these dominant CAFs delay cancer cell response to chemotherapy. Lastly, we reveal that depleting perlecan in the stroma combined with chemotherapy prolongs mouse survival, supporting it as a potential target for anti-stromal therapies in pancreatic cancer.
Subtypes of cancer associated fibroblasts can both promote and suppress tumorigenesis. Here, the authors investigate how p53 status in pancreatic cancer cells affects their interaction with cancer associated fibroblasts, and report perlecan as a mediator of the pro-metastatic environment.
Journal Article
Whole Genome Expression Array Profiling Highlights Differences in Mucosal Defense Genes in Barrett's Esophagus and Esophageal Adenocarcinoma
by
Nancarrow, Derek J.
,
Smithers, B. Mark
,
Tyagi, Sonika
in
Adenocarcinoma
,
Adenocarcinoma - genetics
,
Adenocarcinoma - metabolism
2011
Esophageal adenocarcinoma (EAC) has become a major concern in Western countries due to rapid rises in incidence coupled with very poor survival rates. One of the key risk factors for the development of this cancer is the presence of Barrett's esophagus (BE), which is believed to form in response to repeated gastro-esophageal reflux. In this study we performed comparative, genome-wide expression profiling (using Illumina whole-genome Beadarrays) on total RNA extracted from esophageal biopsy tissues from individuals with EAC, BE (in the absence of EAC) and those with normal squamous epithelium. We combined these data with publically accessible raw data from three similar studies to investigate key gene and ontology differences between these three tissue states. The results support the deduction that BE is a tissue with enhanced glycoprotein synthesis machinery (DPP4, ATP2A3, AGR2) designed to provide strong mucosal defenses aimed at resisting gastro-esophageal reflux. EAC exhibits the enhanced extracellular matrix remodeling (collagens, IGFBP7, PLAU) effects expected in an aggressive form of cancer, as well as evidence of reduced expression of genes associated with mucosal (MUC6, CA2, TFF1) and xenobiotic (AKR1C2, AKR1B10) defenses. When our results are compared to previous whole-genome expression profiling studies keratin, mucin, annexin and trefoil factor gene groups are the most frequently represented differentially expressed gene families. Eleven genes identified here are also represented in at least 3 other profiling studies. We used these genes to discriminate between squamous epithelium, BE and EAC within the two largest cohorts using a support vector machine leave one out cross validation (LOOCV) analysis. While this method was satisfactory for discriminating squamous epithelium and BE, it demonstrates the need for more detailed investigations into profiling changes between BE and EAC.
Journal Article
Alcohol Consumption in Diabetic Patients with Nonalcoholic Fatty Liver Disease
by
Stuart, Katherine A.
,
Saad, Nivene
,
Johnson, Tracey
in
Alcohol use
,
Cardiovascular disease
,
Demographics
2017
Aim. To examine the association between lifetime alcohol consumption and significant liver disease in type 2 diabetic patients with NAFLD. Methods. A cross-sectional study assessing 151 patients with NAFLD at risk of clinically significant liver disease. NAFLD fibrosis severity was classified by transient elastography; liver stiffness measurements ≥8.2 kPa defined significant fibrosis. Lifetime drinking history classified patients into nondrinkers, light drinkers (always ≤20 g/day), and moderate drinkers (any period with intake >20 g/day). Result. Compared with lifetime nondrinkers, light and moderate drinkers were more likely to be male (p=0.008) and to be Caucasian (p=0.007) and to have a history of cigarette smoking (p=0.000), obstructive sleep apnea (p=0.003), and self-reported depression (p=0.003). Moderate drinkers required ≥3 hypoglycemic agents to maintain diabetic control (p=0.041) and fibrate medication to lower blood triglyceride levels (p=0.044). Compared to lifetime nondrinkers, light drinkers had 1.79 (95% CI: 0.67–4.82; p=0.247) and moderate drinkers had 0.91 (95% CI: 0.27–3.10; p=0.881) times the odds of having liver stiffness measurements ≥8.2 kPa (adjusted for age, gender, and body mass index). Conclusions. In diabetic patients with NAFLD, light or moderate lifetime alcohol consumption was not significantly associated with liver fibrosis. The impact of lifetime alcohol intake on fibrosis progression and diabetic comorbidities, in particular obstructive sleep apnea and hypertriglyceridemia, requires further investigation.
Journal Article
Bone Marrow Regulatory T Cells Are a Unique Population, Supported by Niche-Specific Cytokines and Plasmacytoid Dendritic Cells, and Required for Chronic Graft-Versus-Host Disease Control
by
Hunter, Christopher R.
,
Blazar, Bruce R.
,
Nicholls, Jemma
in
bone marrow
,
Cell and Developmental Biology
,
FoxP3
2021
Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice.
In vivo
our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.
Journal Article
Recipient mucosal-associated invariant T cells control GVHD within the colon
2018
Mucosal-associated invariant T (MAIT) cells are a unique innate-like T cell subset that responds to a wide array of bacteria and yeast through recognition of riboflavin metabolites presented by the MHC class I-like molecule MR1. Here, we demonstrate using MR1 tetramers that recipient MAIT cells are present in small but definable numbers in graft-versus-host disease (GVHD) target organs and protect from acute GVHD in the colon following bone marrow transplantation (BMT). Consistent with their preferential juxtaposition to microbial signals in the colon, recipient MAIT cells generate large amounts of IL-17A, promote gastrointestinal tract integrity, and limit the donor alloantigen presentation that in turn drives donor Th1 and Th17 expansion specifically in the colon after BMT. Allogeneic BMT recipients deficient in IL-17A also develop accelerated GVHD, suggesting MAIT cells likely regulate GVHD, at least in part, by the generation of this cytokine. Indeed, analysis of stool microbiota and colon tissue from IL-17A-/- and MR1-/- mice identified analogous shifts in microbiome operational taxonomic units (OTU) and mediators of barrier integrity that appear to represent pathways controlled by similar, IL-17A-dependent mechanisms. Thus, MAIT cells act to control barrier function to attenuate pathogenic T cell responses in the colon and, given their very high frequency in humans, likely represent an important population in clinical BMT.
Journal Article
CSF-1–dependant donor-derived macrophages mediate chronic graft-versus-host disease
by
Teal, Bianca E.
,
Melino, Michelle
,
Lor, Mary
in
Animals
,
Antibodies, Monoclonal - chemistry
,
Biomedical research
2014
Chronic GVHD (cGVHD) is the major cause of late, nonrelapse death following stem cell transplantation and characteristically develops in organs such as skin and lung. Here, we used multiple murine models of cGVHD to investigate the contribution of macrophage populations in the development of cGVHD. Using an established IL-17-dependent sclerodermatous cGVHD model, we confirmed that macrophages infiltrating the skin are derived from donor bone marrow (F4/80+CSF-1R+CD206+iNOS-). Cutaneous cGVHD developed in a CSF-1/CSF-1R-dependent manner, as treatment of recipients after transplantation with CSF-1 exacerbated macrophage infiltration and cutaneous pathology. Additionally, recipients of grafts from Csf1r-/- mice had substantially less macrophage infiltration and cutaneous pathology as compared with those receiving wild-type grafts. Neither CCL2/CCR2 nor GM-CSF/GM-CSFR signaling pathways were required for macrophage infiltration or development of cGVHD. In a different cGVHD model, in which bronchiolitis obliterans is a prominent manifestation, F4/80+ macrophage infiltration was similarly noted in the lungs of recipients after transplantation, and lung cGVHD was also IL-17 and CSF-1/CSF-1R dependent. Importantly, depletion of macrophages using an anti-CSF-1R mAb markedly reduced cutaneous and pulmonary cGVHD. Taken together, these data indicate that donor macrophages mediate the development of cGVHD and suggest that targeting CSF-1 signaling after transplantation may prevent and treat cGVHD.
Journal Article