Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
140
result(s) for
"Cobb, Jennifer"
Sort by:
Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis
by
Burgers, Peter M.
,
Ghisays, Fiorella
,
Chang, Matthew
in
Adenosine triphosphatase
,
Analysis
,
Animals
2020
The DNA damage response (DDR) comprises multiple functions that collectively preserve genomic integrity and suppress tumorigenesis. The Mre11 complex and ATM govern a major axis of the DDR and several lines of evidence implicate that axis in tumor suppression. Components of the Mre11 complex are mutated in approximately five percent of human cancers. Inherited mutations of complex members cause severe chromosome instability syndromes, such as Nijmegen Breakage Syndrome, which is associated with strong predisposition to malignancy. And in mice, Mre11 complex mutations are markedly more susceptible to oncogene- induced carcinogenesis. The complex is integral to all modes of DNA double strand break (DSB) repair and is required for the activation of ATM to effect DNA damage signaling. To understand which functions of the Mre11 complex are important for tumor suppression, we undertook mining of cancer genomic data from the clinical sequencing program at Memorial Sloan Kettering Cancer Center, which includes the Mre11 complex among the 468 genes assessed. Twenty five mutations in MRE11 and RAD50 were modeled in S. cerevisiae and in vitro. The mutations were chosen based on recurrence and conservation between human and yeast. We found that a significant fraction of tumor-borne RAD50 and MRE11 mutations exhibited separation of function phenotypes wherein Tel1/ATM activation was severely impaired while DNA repair functions were mildly or not affected. At the molecular level, the gene products of RAD50 mutations exhibited defects in ATP binding and hydrolysis. The data reflect the importance of Rad50 ATPase activity for Tel1/ATM activation and suggest that inactivation of ATM signaling confers an advantage to burgeoning tumor cells.
Journal Article
Smc5/6 Is a Telomere-Associated Complex that Regulates Sir4 Binding and TPE
by
Moradi-Fard, Sarah
,
Sarthi, Jessica
,
Chartrand, Pascal
in
Adenosine Triphosphatases - genetics
,
Adenosine Triphosphatases - metabolism
,
Biology and Life Sciences
2016
SMC proteins constitute the core members of the Smc5/6, cohesin and condensin complexes. We demonstrate that Smc5/6 is present at telomeres throughout the cell cycle and its association with chromosome ends is dependent on Nse3, a subcomponent of the complex. Cells harboring a temperature sensitive mutant, nse3-1, are defective in Smc5/6 localization to telomeres and have slightly shorter telomeres. Nse3 interacts physically and genetically with two Rap1-binding factors, Rif2 and Sir4. Reduction in telomere-associated Smc5/6 leads to defects in telomere clustering, dispersion of the silencing factor, Sir4, and a loss in transcriptional repression for sub-telomeric genes and non-coding telomeric repeat-containing RNA (TERRA). SIR4 recovery at telomeres is reduced in cells lacking Smc5/6 functionality and vice versa. However, nse3-1/ sir4 Δ double mutants show additive defects for telomere shortening and TPE indicating the contribution of Smc5/6 to telomere homeostasis is only in partial overlap with SIR factor silencing. These findings support a role for Smc5/6 in telomere maintenance that is separate from its canonical role(s) in HR-mediated events during replication and telomere elongation.
Journal Article
Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex
by
Carte, Nathalie
,
Frank, Andreas O.
,
Srinivas, Honnappa
in
631/1647/2258/1266
,
631/535
,
631/92
2020
The anticancer agent indisulam inhibits cell proliferation by causing degradation of RBM39, an essential mRNA splicing factor. Indisulam promotes an interaction between RBM39 and the DCAF15 E3 ligase substrate receptor, leading to RBM39 ubiquitination and proteasome-mediated degradation. To delineate the precise mechanism by which indisulam mediates the DCAF15–RBM39 interaction, we solved the DCAF15–DDB1–DDA1–indisulam–RBM39(RRM2) complex structure to a resolution of 2.3 Å. DCAF15 has a distinct topology that embraces the RBM39(RRM2) domain largely via non-polar interactions, and indisulam binds between DCAF15 and RBM39(RRM2), coordinating additional interactions between the two proteins. Studies with RBM39 point mutants and indisulam analogs validated the structural model and defined the RBM39 α-helical degron motif. The degron is found only in RBM23 and RBM39, and only these proteins were detectably downregulated in indisulam-treated HCT116 cells. This work further explains how indisulam induces RBM39 degradation and defines the challenge of harnessing DCAF15 to degrade additional targets.
The crystal and cryo-electron microscopy structure analysis of the DCAF15–DDB1–DDA1–indisulam–RBM39 complex revealed the detailed mechanism of action of indisulam-induced RBM39 degradation and defined an α-helical degron motif in RBM39.
Journal Article
Smc5/6 in the rDNA modulates lifespan independently of Fob1
by
Cobb, Jennifer A.
,
Harkness, Troy A.A.
,
Mojumdar, Aditya
in
Animals
,
Cell Cycle Proteins - metabolism
,
Chromosomes
2021
The ribosomal DNA (rDNA) in Saccharomyces cerevisiae is in one tandem repeat array on Chromosome XII. Two regions within each repetitive element, called intergenic spacer 1 (IGS1) and IGS2, are important for organizing the rDNA within the nucleolus. The Smc5/6 complex localizes to IGS1 and IGS2. We show that Smc5/6 has a function in the rDNA beyond its role in homologous recombination (HR) at the replication fork barrier (RFB) located in IGS1. Fob1 is required for optimal binding of Smc5/6 at IGS1 whereas the canonical silencing factor Sir2 is required for its optimal binding at IGS2, independently of Fob1. Through interdependent interactions, Smc5/6 stabilizes Sir2 and Cohibin at both IGS and its recovery at IGS2 is important for nucleolar compaction and transcriptional silencing, which in turn supports rDNA stability and lifespan. Smc5/6 is important for transcriptional silencing in the rDNA. rDNA compaction requires Smc5/6 localization to IGS regions. Transcriptional silencing of ncRNA at IGS1 and IGS2 is differentially regulated. Smc5/6 has a role in rDNA maintenance independent of HR processing at the RFB. Fob1‐independent disruption of Smc5/6 leads to lifespan reduction.
Journal Article
The Mre11-Rad50-Xrs2 Complex Is Required for Yeast DNA Postreplication Repair
by
Lambrecht, Amanda D.
,
Ball, Lindsay G.
,
Hanna, Michelle D.
in
Analysis
,
Baking yeast
,
Biology and life sciences
2014
Yeast DNA postreplication repair (PRR) bypasses replication-blocking lesions to prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA, namely translesion synthesis (TLS) and error-free PRR, which are regulated via sequential ubiquitination of proliferating cell nuclear antigen (PCNA). We previously demonstrated that error-free PRR utilizes homologous recombination to facilitate template switching. To our surprise, genes encoding the Mre11-Rad50-Xrs2 (MRX) complex, which are also required for homologous recombination, are epistatic to TLS mutations. Further genetic analyses indicated that two other nucleases involved in double-strand end resection, Sae2 and Exo1, are also variably required for efficient lesion bypass. The involvement of the above genes in TLS and/or error-free PRR could be distinguished by the mutagenesis assay and their differential effects on PCNA ubiquitination. Consistent with the observation that the MRX complex is required for both branches of PRR, the MRX complex was found to physically interact with Rad18 in vivo. In light of the distinct and overlapping activities of the above nucleases in the resection of double-strand breaks, we propose that the interplay between distinct single-strand nucleases dictate the preference between TLS and error-free PRR for lesion bypass.
Journal Article
Pathogenic, but Not Nonpathogenic, Rickettsia spp. Evade Inflammasome-Dependent IL-1 Responses To Establish an Intracytosolic Replication Niche
2022
Currently, no vaccines are available to prevent rickettsioses, while vector-borne rickettsial infections in humans are on the rise globally. In fact, the insufficient understanding of how pathogenic Rickettsia species circumvent host immune defense mechanisms has significantly hindered the development of more effective therapeutics. Rickettsia species (spp.) are strict obligate intracellular bacteria, some of which are pathogenic in their mammalian host, including humans. One critical feature of these stealthy group of pathogens is their ability to manipulate hostile cytosolic environments to their benefits. Although our understanding of Rickettsia cell biology and pathogenesis is evolving, the mechanisms by which pathogenic Rickettsia spp. evade host innate immune detection remain elusive. Here, we show that disease severity in wild-type (WT) C57BL/6J mice infected with Rickettsia typhi (the etiologic agent of murine typhus) and Rickettsia rickettsii (the etiologic agent of Rocky Mountain spotted fever), but not with the nonpathogenic species Rickettsia montanensis , correlated with levels of bacterial burden as detected in the spleens of mice, as well as the serum concentrations of proinflammatory cytokine interleukin-1α (IL-1α) and, to a lesser extent, IL-1β. Antibody-mediated neutralization of IL-1α confirmed a key role in controlling mortality rates and bacterial burdens of rickettsia-infected WT mice. As macrophages are a primary source of both IL-1α and IL-1β cytokines, we determined the mechanism of the antirickettsial activities using bone marrow-derived macrophages. We found that pathogenic R. typhi and R. rickettsii , but not nonpathogenic R. montanensis , eluded pro-IL-1α induction and benefited predominantly from the reduced IL-1α secretion, via a caspase-11–gasdermin D (Gsdmd)-dependent pathway, to facilitate intracytosolic replication. Adoptive transfer experiments identified that IL-1α secretion by macrophages was critical for controlling rickettsiosis in WT mice. In sum, we identified a previously unappreciated pathway by which pathogenic, unlike nonpathogenic, rickettsiae preferentially target the caspase-11–Gsdmd–IL-1α signaling axis in macrophages, thus supporting their replication within the host. IMPORTANCE Currently, no vaccines are available to prevent rickettsioses, while vector-borne rickettsial infections in humans are on the rise globally. In fact, the insufficient understanding of how pathogenic Rickettsia species circumvent host immune defense mechanisms has significantly hindered the development of more effective therapeutics. Here, we identified a previously unappreciated role for the caspase-11–Gsdmd–IL-1α signaling axis in limiting the replication of pathogenic R. rickettsia and R. typhi species in murine macrophages and wild-type (WT) C57BL/6J mice. Adoptive transfer studies further identified IL-1α-secreting macrophages as critical mediators in controlling rickettsial infection in WT mice. Collectively, these findings provide insight into the potential mechanism of how pathogenic, but not nonpathogenic, Rickettsia spp. benefit from a reduction in the caspase-11–Gsdmd-mediated release of IL-1α to support host colonization.
Journal Article
DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1
by
Bjergbaek, Lotte
,
Cobb, Jennifer A.
,
Frei, Christian
in
ATM-related kinase
,
Deoxyribonucleic acid
,
DNA Helicases - chemistry
2003
To ensure proper replication and segregation of the genome, eukaryotic cells have evolved surveillance systems that monitor and react to impaired replication fork progression. In budding yeast, the intra‐S phase checkpoint responds to stalled replication forks by downregulating late‐firing origins, preventing spindle elongation and allowing efficient resumption of DNA synthesis after recovery from stress. Mutations in this pathway lead to high levels of genomic instability, particularly in the presence of DNA damage. Here we demonstrate by chromatin immunoprecipitation that when yeast replication forks stall due to hydroxyurea (HU) treatment, DNA polymerases α and ϵ are stabilized for 40–60 min. This requires the activities of Sgs1, a member of the RecQ family of DNA helicases, and the ATM‐related kinase Mec1, but not Rad53 activation. A model is proposed whereby Sgs1 helicase resolves aberrantly paired structures at stalled forks to maintain single‐stranded DNA that allows RP‐A and Mec1 to promote DNA polymerase association.
Journal Article
The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress
by
Alabert, Constance
,
Tittel‐Elmer, Mireille
,
Cobb, Jennifer A
in
Animals
,
Cellular biology
,
Chromosomes
2009
The Mre11–Rad50–Xrs2 (MRX) complex has an important function in the maintenance of genomic integrity by contributing to the detection and repair of chromosome breaks. Here we show that the complex is recruited to sites of paused forks where it stabilizes the association of essential replisome components. Interestingly, this function is not dependent on the S phase checkpoint or the nuclease activity of Mre11. We find that disruption of the MRX complex leads to a loss of fork recovery and a failure to properly complete DNA replication when cells are exposed to replication stress. Our data suggest that one critical function of the MRX complex during replication is to promote the cohesion of sister chromatids at paused forks, offering an explanation for why MRX deficiency leads to a loss of cell viability and high levels of chromosome rearrangements under conditions of replication stress.
Journal Article
Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance
by
Bjergbaek, Lotte
,
Tsai‐Pflugfelder, Monica
,
Gasser, Susan M
in
Cell Cycle
,
Cell Cycle Proteins - physiology
,
Checkpoint Kinase 2
2005
The RecQ helicase Sgs1p forms a complex with the type 1 DNA topoisomerase Top3p that resolves double Holliday junctions resulting from Rad51‐mediated exchange. We find, however, that Sgs1p functions independently of both Top3p and Rad51p to stimulate the checkpoint kinase Rad53p when replication forks stall due to dNTP depletion on hydroxyurea. Checkpoint activation does not require Sgs1p function as a helicase, and correlates with its ability to bind the Rad53p kinase FHA1 motif directly. On the other hand, Sgs1p's helicase activity is required together with Top3p and the strand‐exchange factor Rad51p, to help stabilise DNA polymerase ε at stalled replication forks. In this function, the Sgs1p/Top3p complex acts in parallel to the Claspin‐related adaptor, Mrc1p, although the
sgs1
and
mrc1
mutations are epistatic for Rad53p activation. We thus identify two distinct pathways through which Sgs1p contributes to genomic integrity: checkpoint kinase activation requires Sgs1p as a noncatalytic Rad53p‐binding site, while the combined Top3p/Sgs1p resolvase activity contributes to replisome stability and recovery from arrested replication forks.
Journal Article
Lack of Involvement of CEP Adducts in TLR Activation and in Angiogenesis
by
Cobb, Jennifer S.
,
Anderson, Karen
,
De Erkenez, Andrea
in
Abrasion
,
Abrasion resistance
,
Activation
2014
Proteins that are post-translationally adducted with 2-(ω-carboxyethyl)pyrrole (CEP) have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2)-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88) had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others.
Journal Article